Do scale-free regulatory networks allow more expression than random ones?

In this paper, we compile the network of software packages with regulatory interactions (dependences and conflicts) from Debian GNU/Linux operating system and use it as an analogy for a gene regulatory network. Using a trace-back algorithm we assemble networks from the pool of packages with both scale-free (real data) and exponential (null model) topologies. We record the maximum number of packages that can be functionally installed in the system (i.e., the active network size). We show that scale-free regulatory networks allow a larger active network size than random ones. This result might have implications for the number of expressed genes at steady state. Small genomes with scale-free regulatory topologies could allow much more expression than large genomes with exponential topologies. This may have implications for the dynamics, robustness and evolution of genomes.

[1]  M. Vignali,et al.  A protein interaction network of the malaria parasite Plasmodium falciparum , 2005, Nature.

[2]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[3]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[4]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[5]  R. May Food webs. , 1983, Science.

[6]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[7]  R. Paine Food Web Complexity and Species Diversity , 1966, The American Naturalist.

[8]  A. Mochizuki An analytical study of the number of steady states in gene regulatory networks. , 2005, Journal of theoretical biology.

[9]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[10]  J. Bascompte,et al.  Invariant properties in coevolutionary networks of plant-animal interactions , 2002 .

[11]  S. Low,et al.  The "robust yet fragile" nature of the Internet. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[14]  R. Guimerà,et al.  The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Davidson Genomic Regulatory Systems: Development and Evolution , 2005 .

[16]  L. Amaral,et al.  The web of human sexual contacts , 2001, Nature.

[17]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S H Strogatz,et al.  Random graph models of social networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Jasmine Novak,et al.  Geographic routing in social networks , 2005, Proc. Natl. Acad. Sci. USA.

[20]  Roger Guimerà,et al.  Modeling the world-wide airport network , 2004 .

[21]  P. Bourgine,et al.  Topological and causal structure of the yeast transcriptional regulatory network , 2002, Nature Genetics.

[22]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[23]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[24]  A. Barabasi,et al.  Evolution of the social network of scientific collaborations , 2001, cond-mat/0104162.

[25]  J. E. Cohen,et al.  Food webs and niche space. , 1979, Monographs in population biology.

[26]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[27]  S. Strogatz Exploring complex networks , 2001, Nature.

[28]  R. Tjian,et al.  Transcription regulation and animal diversity , 2003, Nature.

[29]  Lada A. Adamic,et al.  Internet: Growth dynamics of the World-Wide Web , 1999, Nature.

[30]  Carlos J. Melián,et al.  The nested assembly of plant–animal mutualistic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[32]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[33]  S. Teichmann,et al.  Evolutionary dynamics of prokaryotic transcriptional regulatory networks. , 2006, Journal of molecular biology.

[34]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[35]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[36]  E. Davidson Genomic Regulatory Systems , 2001 .