Electrical impedance tomography with resistor networks

We introduce a novel inversion algorithm for electrical impedance tomography in two dimensions, based on a model reduction approach. The reduced models are resistor networks that arise in five point stencil discretizations of the elliptic partial differential equation satisfied by the electric potential, on adaptive grids that are computed as part of the problem. We prove the unique solvability of the model reduction problem for a broad class of measurements of the Dirichlet-to-Neumann map. The size of the networks is limited by the precision of the measurements. The resulting grids are naturally refined near the boundary, where we measure and expect better resolution of the images. To determine the unknown conductivity, we use the resistor networks to define a nonlinear mapping of the data that behaves as an approximate inverse of the forward map. Then we formulate an efficient Newton-type iteration for finding the conductivity, using this map. We also show how to incorporate a priori information about the conductivity in the inversion scheme.

[1]  Alan C. Tripp,et al.  INVERSE CONDUCTIVITY PROBLEM FOR INACCURATE MEASUREMENTS , 1996 .

[2]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[3]  Y. C. Verdière,et al.  Reseaux électriques planaires II , 1994 .

[4]  F. G. Vasquez On the parameterization of ill-posed inverse problems arising from elliptic partial differential equations , 2006 .

[5]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[6]  Andy Adler,et al.  Total Variation Regularization in Electrical Impedance Tomography , 2007 .

[7]  Liliana Borcea,et al.  INVERSE PROBLEMS PII: S0266-5611(02)33630-X Optimal finite difference grids for direct and inverse Sturm–Liouville problems , 2002 .

[8]  Robert V. Kohn,et al.  Determining conductivity by boundary measurements , 1984 .

[9]  Thomas A. Manteuffel,et al.  First-Order System Least Squares and Electrical Impedance Tomography , 2004, SIAM J. Numer. Anal..

[10]  H. Ben Ameur,et al.  Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators , 2002 .

[11]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[12]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[13]  James A. Morrow,et al.  Circular planar graphs and resistor networks , 1998 .

[14]  James A. Morrow,et al.  Finding the conductors in circular networks from boundary measurements , 1994 .

[15]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[16]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[17]  David V. Ingerman,et al.  On a characterization of the kernel of the Dirichlet-to-Neumann map for a planar region , 1998 .

[18]  David Isaacson,et al.  Layer stripping: a direct numerical method for impedance imaging , 1991 .

[19]  Andrea Borsic,et al.  Regularisation methods for imaging from electrical measurements. , 2002 .

[20]  David Clark Dobson Stability and regularity of an inverse elliptic boundary value problem , 1990 .

[21]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[22]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[23]  Y. C. Verdière,et al.  Réseaux électriques planaires I , 1994 .

[24]  Liliana Borcea,et al.  Electrical impedance tomography , 2002 .

[25]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[26]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[27]  K. A. Dines,et al.  Analysis of electrical conductivity imaging , 1981 .

[28]  David V. Ingerman,et al.  Discrete and Continuous Dirichlet-to-Neumann Maps in the Layered Case , 2000, SIAM J. Math. Anal..

[29]  Gunther Uhlmann,et al.  Developments in inverse problems since Calderon’s foundational paper , 1999 .

[30]  Fadil Santosa,et al.  Stability and resolution analysis of a linearized problem in electrical impedance tomography , 1991 .

[31]  E. Curtis,et al.  Inverse Problems for Electrical Networks , 2000 .

[32]  D. Isaacson Distinguishability of Conductivities by Electric Current Computed Tomography , 1986, IEEE Transactions on Medical Imaging.

[33]  Jérôme Jaffré,et al.  Refinement and coarsening indicators for adaptive parametrization: application to the estimation of hydraulic transmissivities , 2002 .

[34]  G. Papanicolaou,et al.  High-contrast impedance tomography , 1996 .

[35]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[36]  David C. Dobson,et al.  Convergence of a reconstruction method for the inverse conductivity problem , 1992 .

[37]  Y. C. Verdière Réseaux électrique planaires I. , 1994 .

[38]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .

[39]  David Isaacson,et al.  Electric current computed tomography eigenvalues , 1990 .

[40]  James G. Berryman,et al.  Matching pursuit for imaging high-contrast conductivity , 1999 .

[41]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[42]  A. Seagar,et al.  Probing with low frequency electric currents. , 1983 .

[43]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[44]  Samuli Siltanen,et al.  Numerical solution method for the dbar-equation in the plane , 2004 .

[45]  Liliana Borcea,et al.  On the continuum limit of a discrete inverse spectral problem on optimal finite difference grids , 2005 .

[46]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.