Correlation-based virtual source imaging in strongly scattering random media

Array imaging in a strongly scattering medium is limited because coherent signals recorded at the array and coming from a reflector to be imaged are weak and dominated by incoherent signals coming from multiple scattering by the medium. If, however, an auxiliary passive array can be placed between the reflector to be imaged and the scattering medium then the cross correlations of the incoherent signals on this array can also be used to image the reflector. In this paper, we show both in the weakly scattering paraxial regime and in strongly scattering layered media that this cross-correlation approach produces images as if the medium between the sources and the passive array was homogeneous and the auxiliary passive array was an active one made up of both sources and receivers.

[1]  B. Uscinski The elements of wave propagation in random media / B.J. Uscinski , 1977 .

[2]  George Papanicolaou,et al.  Frequency Content of Randomly Scattered Signals , 1991, SIAM Rev..

[3]  Josselin Garnier,et al.  Imaging in Randomly Layered Media by Cross-Correlating Noisy Signals , 2005, Multiscale Model. Simul..

[4]  Josselin Garnier,et al.  Time reversal super resolution in randomly layered media , 2006 .

[5]  George Papanicolaou,et al.  Self-Averaging from Lateral Diversity in the Itô-Schrödinger Equation , 2007, Multiscale Model. Simul..

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  G. Papanicolaou,et al.  Interferometric array imaging in clutter , 2005 .

[8]  W. C. Elmore,et al.  Physics of Waves , 1969 .

[9]  Josselin Garnier,et al.  Coupled paraxial wave equations in random media in the white-noise regime , 2009, 0903.0449.

[10]  Roel Snieder,et al.  Improving the virtual‐source method by wavefield separation , 2007 .

[11]  Liliana Borcea,et al.  Adaptive interferometric imaging in clutter and optimal illumination , 2006 .

[12]  Biondo L. Biondi,et al.  3D Seismic Imaging , 2006 .

[13]  Liliana Borcea,et al.  Coherent Interferometry in Finely Layered Random Media , 2006, Multiscale Model. Simul..

[14]  G. Papanicolaou,et al.  Coherent interferometric imaging, time gating and beamforming , 2011 .

[15]  George Papanicolaou,et al.  Statistical Stability in Time Reversal , 2004, SIAM J. Appl. Math..

[16]  Mickael Tanter,et al.  Recovering the Green's function from field-field correlations in an open scattering medium. , 2003, The Journal of the Acoustical Society of America.

[17]  Alexandre Boritchev,et al.  Decaying Turbulence in the Generalised Burgers Equation , 2012, 1304.6814.

[18]  Benjamin S. White,et al.  Localization and backscattering spectrum of seismic waves in stratified lithology , 1990 .

[19]  Milo M. Backus,et al.  WATER REVERBERATIONS—THEIR NATURE AND ELIMINATION , 1959 .

[20]  B. M. Shevtsov Statistical characteristics for wave-packet scattering in a layered randomly inhomogeneous medium above a reflecting surface , 1987 .

[21]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[22]  Fred D. Tappert,et al.  The parabolic approximation method , 1977 .

[23]  G. Papanicolaou,et al.  Reflection and Transmission of Acoustic Waves by a Locally-Layered Random Slab , 1999 .

[24]  Benjamin S. White,et al.  Reflection of waves generated by a point source over a randomly layered medium , 1991 .

[25]  Josselin Garnier,et al.  Cross Correlation and Deconvolution of Noise Signals in Randomly Layered Media , 2010, SIAM J. Imaging Sci..

[26]  Liliana Borcea,et al.  Filtering Deterministic Layer Effects in Imaging , 2012, SIAM Rev..

[27]  Josselin Garnier,et al.  Wave Transmission through Random Layering with Pressure Release Boundary Conditions , 2010, Multiscale Model. Simul..

[28]  Liliana Borcea,et al.  Filtering Deterministic Layer Effects in Imaging , 2009, SIAM Rev..

[29]  Josselin Garnier,et al.  Time-reversal refocusing for point source in randomly layered media , 2005 .

[30]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[31]  G. Papanicolaou,et al.  Enhanced statistical stability in coherent interferometric imaging , 2011 .

[32]  Rodney Calvert,et al.  he virtual source method : Theory and case study , 2006 .

[33]  E. Slob,et al.  Tutorial on seismic interferometry: Part 2 — Underlying theory and new advances , 2010 .

[34]  J. Vesecky,et al.  Wave propagation and scattering. , 1989 .

[35]  J. McWhirter,et al.  Correlation function dependence of the scintillation behind a deep random phase screen , 1977 .

[36]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[37]  George Papanicolaou,et al.  Ray theory for a locally layered random medium , 2000 .

[38]  Liliana Borcea,et al.  Coherent interferometric imaging in clutter , 2006 .

[39]  Maarten V. de Hoop,et al.  Estimating a Green's Function from "Field-Field" Correlations in a Random Medium , 2009, SIAM J. Appl. Math..

[40]  Josselin Garnier,et al.  Resolution analysis for imaging with noise , 2010 .

[41]  Josselin Garnier,et al.  Passive Sensor Imaging Using Cross Correlations of Noisy Signals in a Scattering Medium , 2009, SIAM J. Imaging Sci..

[42]  Andrew J. Calvert Ray-tracing-based prediction and subtraction of water-layer multiples , 1990 .