An adaptive least-squares collocation radial basis function method for the HJB equation

We present a novel numerical method for the Hamilton–Jacobi–Bellman equation governing a class of optimal feedback control problems. The spatial discretization is based on a least-squares collocation Radial Basis Function method and the time discretization is the backward Euler finite difference. A stability analysis is performed for the discretization method. An adaptive algorithm is proposed so that at each time step, the approximate solution can be constructed recursively and optimally. Numerical results are presented to demonstrate the efficiency and accuracy of the method.

[1]  A. Iske,et al.  Grid-free adaptive semi-Lagrangian advection using radial basis functions , 2002 .

[2]  Klaus Schittkowski,et al.  NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[3]  Víctor Pereyra,et al.  Least squares collocation solution of elliptic problems in general regions , 2006, Math. Comput. Simul..

[4]  K. Teo,et al.  Solving Hamilton-Jacobi-Bellman equations by a modified method of characteristics , 2000 .

[5]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[6]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[7]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[10]  Song Wang,et al.  A radial basis collocation method for Hamilton-Jacobi-Bellman equations , 2006, Autom..

[11]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[12]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[13]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[14]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[15]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[16]  Armin Iske,et al.  Adaptive Meshfree Method of Backward Characteristics for Nonlinear Transport Equations , 2003 .

[17]  L R Fletcher,et al.  Prediction of a glucose appearance function from foods using deconvolution. , 2000, IMA journal of mathematics applied in medicine and biology.

[18]  Qing Zhang,et al.  Stochastic Analysis, Control, Optimization and Applications , 2012 .

[19]  K. Teo,et al.  On application of an alternating direction method to Hamilton-Jacobin-Bellman equations , 2004 .

[20]  Song Wang,et al.  Numerical solution of Hamilton–Jacobi–Bellman equations by an exponentially fitted finite volume method , 2006 .

[21]  Antanas Zilinskas,et al.  On similarities between two models of global optimization: statistical models and radial basis functions , 2010, J. Glob. Optim..

[22]  Song Wang,et al.  THE VISCOSITY APPROXIMATION TO THE HAMILTON-JACOBI-BELLMAN EQUATION IN OPTIMAL FEEDBACK CONTROL: UPPER BOUNDS FOR EXTENDED DOMAINS , 2009 .

[23]  Kok Lay Teo,et al.  An upwind finite-difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations , 2000 .

[24]  Joseph D. Ward,et al.  Collocation discretizations of the transport equation with radial basis functions , 2003, Appl. Math. Comput..

[25]  Leevan Ling,et al.  Adaptive multiquadric collocation for boundary layer problems , 2006 .

[26]  Scott A. Sarra,et al.  Adaptive radial basis function methods for time dependent partial differential equations , 2005 .

[27]  Kok Lay Teo,et al.  Numerical Solution of Hamilton-Jacobi-Bellman Equations by an Upwind Finite Volume Method , 2003, J. Glob. Optim..

[28]  M. Falcone,et al.  An Approximation Scheme for Evolutive Hamilton-Jacobi Equations , 1999 .

[29]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[30]  Kenneth Holmström,et al.  An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization , 2008, J. Glob. Optim..