Never Ending Analysis of a Century Old Evolutionary Debate: “Unringing” the Urmetazoon Bell

Our understanding of the early evolution of animals will be greatly improved if a final solution can be found to the evolutionary relationships between Porifera, Placozoa, Ctenophora, Cnidaria and Bilateria. There have been many recent attempts to solve this key issue at the base of the metazoan tree of life, and these have sparked heated discussions and highlighted fundamental analytical problems. We argue that solving this problem will necessitate analysis of disparate data types, including phylogenomic data, larger scale genomic characters, developmental data and morphological characters. At the least, morphological and developmental data must be used to cross-validate phylogenomic conclusions, but ideally solutions should be sought to the problems of combining disparate data sources with appropriate character weighting and algorithm choice.

[1]  G. Wörheide,et al.  Molecular paleobiology - progress and perspectives , 2016 .

[2]  John Gatesy,et al.  The gene tree delusion. , 2016, Molecular phylogenetics and evolution.

[3]  G. Hartvigsen Biodiversity and Evolution , 2016 .

[4]  K. Kocot,et al.  Employing Phylogenomics to Resolve the Relationships among Cnidarians, Ctenophores, Sponges, Placozoans, and Bilaterians. , 2015, Integrative and comparative biology.

[5]  H. Philippe,et al.  Genomic data do not support comb jellies as the sister group to all other animals , 2015, Proceedings of the National Academy of Sciences.

[6]  F. Pedersen,et al.  Two Virus-Induced MicroRNAs Known Only from Teleost Fishes Are Orthologues of MicroRNAs Involved in Cell Cycle Control in Humans , 2015, PloS one.

[7]  L. Moroz,et al.  Error, signal, and the placement of Ctenophora sister to all other animals , 2015, Proceedings of the National Academy of Sciences.

[8]  Peter F. Stadler,et al.  The Expansion of Animal MicroRNA Families Revisited , 2015, Life.

[9]  Martin Middendorf,et al.  Phylogenomics with paralogs , 2015, Proceedings of the National Academy of Sciences.

[10]  B. Schierwater,et al.  Trichoplax and Placozoa: one of the crucial keys to understanding metazoan evolution , 2015 .

[11]  Md. Shamsuzzoha Bayzid,et al.  Whole-genome analyses resolve early branches in the tree of life of modern birds , 2014, Science.

[12]  G. Giribet,et al.  Animal Phylogeny and Its Evolutionary Implications , 2014 .

[13]  I. Stöger,et al.  A review on deep molluscan phylogeny: old markers, integrative approaches, persistent problems , 2014 .

[14]  Thomas K. F. Wong,et al.  Phylogenomics resolves the timing and pattern of insect evolution , 2014, Science.

[15]  John Gatesy,et al.  Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. , 2014, Molecular phylogenetics and evolution.

[16]  D. Ferrier,et al.  Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes , 2014, Nature.

[17]  Saravanaraj N. Ayyampalayam,et al.  Phylotranscriptomic analysis of the origin and early diversification of land plants , 2014, Proceedings of the National Academy of Sciences.

[18]  R. C. Thomson,et al.  A critical appraisal of the use of microRNA data in phylogenetics , 2014, Proceedings of the National Academy of Sciences.

[19]  M. Thines,et al.  Gene Loss Rather Than Gene Gain Is Associated with a Host Jump from Monocots to Dicots in the Smut Fungus Melanopsichium pennsylvanicum , 2014, Genome biology and evolution.

[20]  G. Conant,et al.  Secondary Structure Analyses of the Nuclear rRNA Internal Transcribed Spacers and Assessment of Its Phylogenetic Utility across the Brassicaceae (Mustards) , 2014, PloS one.

[21]  Victor V. Solovyev,et al.  The Ctenophore Genome and the Evolutionary Origins of Neural Systems , 2014, Nature.

[22]  Phillip D Zamore,et al.  Cnidarian microRNAs frequently regulate targets by cleavage , 2014, Genome research.

[23]  B. Schierwater,et al.  3 Phylogenetics and phylogenomics at the root of the Metazoa , 2014 .

[24]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[25]  L. Kubatko,et al.  Gene tree rooting methods give distributions that mimic the coalescent process. , 2014, Molecular phylogenetics and evolution.

[26]  Alexandros Stamatakis,et al.  The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data , 2014, BMC Evolutionary Biology.

[27]  Pamela S Soltis,et al.  From algae to angiosperms–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes , 2014, BMC Evolutionary Biology.

[28]  Nicholas H. Putnam,et al.  The Genome of the Ctenophore Mnemiopsis leidyi and Its Implications for Cell Type Evolution , 2013, Science.

[29]  Audrey Nailor,et al.  miRNAs: small genes with big potential in metazoan phylogenetics. , 2013, Molecular biology and evolution.

[30]  Matthias Bernt,et al.  A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. , 2013, Molecular phylogenetics and evolution.

[31]  P. Stadler,et al.  Genetic aspects of mitochondrial genome evolution. , 2013, Molecular phylogenetics and evolution.

[32]  E. Hovig,et al.  Substantial Loss of Conserved and Gain of Novel MicroRNA Families in Flatworms , 2013, Molecular biology and evolution.

[33]  D. Fredman,et al.  The Evolution of MicroRNA Pathway Protein Components in Cnidaria , 2013, Molecular biology and evolution.

[34]  Matthew W. Brown,et al.  The Capsaspora genome reveals a complex unicellular prehistory of animals , 2013, Nature Communications.

[35]  J. Garcia-Fernández,et al.  Evolution of Hox gene clusters in deuterostomes , 2013, BMC Developmental Biology.

[36]  B. Schierwater,et al.  Global Diversity of the Placozoa , 2013, PloS one.

[37]  M. Maldonado,et al.  Deep metazoan phylogeny: when different genes tell different stories. , 2013, Molecular phylogenetics and evolution.

[38]  B. Lang,et al.  Mitochondrial DNA of Clathrina clathrus (Calcarea, Calcinea): six linear chromosomes, fragmented rRNAs, tRNA editing, and a novel genetic code. , 2013, Molecular biology and evolution.

[39]  P. Stadler,et al.  Near intron pairs and the metazoan tree. , 2013, Molecular phylogenetics and evolution.

[40]  K. Peterson,et al.  The identification of microRNAs in calcisponges: independent evolution of microRNAs in basal metazoans. , 2013, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[41]  Gaston H. Gonnet,et al.  The Impact of Gene Duplication, Insertion, Deletion, Lateral Gene Transfer and Sequencing Error on Orthology Inference: A Simulation Study , 2013, PloS one.

[42]  Andrea L. Cirranello,et al.  The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals , 2013, Science.

[43]  B. Schierwater,et al.  Chasing the urmetazoon: striking a blow for quality data? , 2013, Molecular phylogenetics and evolution.

[44]  A. Maxmen Genome reveals comb jellies' ancient origin , 2013, Nature.

[45]  P. Holland,et al.  Evolution of homeobox genes , 2013, Wiley interdisciplinary reviews. Developmental biology.

[46]  Todd H. Oakley,et al.  Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement, and pancrustacean phylogeny. , 2013, Molecular biology and evolution.

[47]  I. Ruiz-Trillo,et al.  Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. , 2013, Protist.

[48]  Stefan Grünewald,et al.  SuperQ: Computing Supernetworks from Quartets , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[49]  B. Haas,et al.  Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta , 2013, Genome Biology.

[50]  A. Baxevanis,et al.  MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi , 2012, BMC Genomics.

[51]  D. Barker,et al.  Ghost Loci Imply Hox and ParaHox Existence in the Last Common Ancestor of Animals , 2012, Current Biology.

[52]  Sen Song,et al.  Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model , 2012, Proceedings of the National Academy of Sciences.

[53]  R. DeSalle,et al.  Random roots and lineage sorting. , 2012, Molecular phylogenetics and evolution.

[54]  R. DeSalle,et al.  E value cutoff and eukaryotic genome content phylogenetics. , 2012, Molecular phylogenetics and evolution.

[55]  M. Irimia,et al.  Widespread Recurrent Evolution of Genomic Features , 2012, Genome biology and evolution.

[56]  A. Haeseler Do we still need supertrees? , 2012, BMC Biology.

[57]  G. Edgecombe,et al.  Reevaluating the arthropod tree of life. , 2012, Annual review of entomology.

[58]  M. Maldonado,et al.  Deep phylogeny and evolution of sponges (phylum Porifera). , 2012, Advances in marine biology.

[59]  H. Philippe,et al.  Difficult phylogenetic questions: more data, maybe; better methods, certainly , 2011, BMC Biology.

[60]  Klaus Schliep,et al.  Let them fall where they may: congruence analysis in massive phylogenetically messy data sets. , 2011, Molecular biology and evolution.

[61]  G. Edgecombe,et al.  MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda , 2011, Proceedings of the National Academy of Sciences.

[62]  Arcady R. Mushegian,et al.  Computational methods for Gene Orthology inference , 2011, Briefings Bioinform..

[63]  H. Philippe,et al.  Resolving Difficult Phylogenetic Questions: Why More Sequences Are Not Enough , 2011, PLoS biology.

[64]  R. Copley,et al.  Acoelomorph flatworms are deuterostomes related to Xenoturbella , 2011, Nature.

[65]  R. Cameron,et al.  microRNA complements in deuterostomes: origin and evolution of microRNAs , 2011, Evolution & development.

[66]  M. Holder,et al.  The phylogenetic position of Myxozoa: exploring conflicting signals in phylogenomic and ribosomal data sets. , 2010, Molecular biology and evolution.

[67]  A. von Haeseler,et al.  A phylogenomic approach to resolve the arthropod tree of life. , 2010, Molecular biology and evolution.

[68]  J. Mullikin,et al.  The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa , 2010, EvoDevo.

[69]  B. Schierwater,et al.  The phylogeography of the Placozoa suggests a taxon‐rich phylum in tropical and subtropical waters , 2010, Molecular ecology.

[70]  J. Shultz,et al.  Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences , 2010, Nature.

[71]  M. Siddall Unringing a bell: metazoan phylogenomics and the partition bootstrap , 2009, Cladistics : the international journal of the Willi Hennig Society.

[72]  Scott V Edwards,et al.  Coalescent methods for estimating phylogenetic trees. , 2009, Molecular phylogenetics and evolution.

[73]  D. Pearl,et al.  Estimating species phylogenies using coalescence times among sequences. , 2009, Systematic biology.

[74]  Peter F. Stadler,et al.  Non-coding RNA annotation of the genome of Trichoplax adhaerens , 2009, Nucleic acids research.

[75]  Christophe Dessimoz,et al.  Phylogenetic and Functional Assessment of Orthologs Inference Projects and Methods , 2009, PLoS Comput. Biol..

[76]  S. Edwards IS A NEW AND GENERAL THEORY OF MOLECULAR SYSTEMATICS EMERGING? , 2009, Evolution; international journal of organic evolution.

[77]  B. Schierwater,et al.  Concatenated Analysis Sheds Light on Early Metazoan Evolution and Fuels a Modern “Urmetazoon” Hypothesis , 2009, PLoS biology.

[78]  R. DeSalle,et al.  Evidence, Content and Corroboration and the Tree of Life , 2008, Acta biotheoretica.

[79]  Benjamin M. Wheeler,et al.  The deep evolution of metazoan microRNAs , 2009, Evolution & development.

[80]  P. Holland,et al.  Do cnidarians have a ParaHox cluster? Analysis of synteny around a Nematostella homeobox gene cluster , 2008, Evolution & development.

[81]  Nicholas H. Putnam,et al.  The Trichoplax genome and the nature of placozoans , 2008, Nature.

[82]  Rafael D. Rosengarten,et al.  The Early ANTP Gene Repertoire: Insights from the Placozoan Genome , 2008, PloS one.

[83]  O. Voigt,et al.  A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata , 2008, BMC Genomics.

[84]  E. Thompson,et al.  Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. , 2008, Molecular biology and evolution.

[85]  Kamran Shalchian-Tabrizi,et al.  Multigene Phylogeny of Choanozoa and the Origin of Animals , 2008, PloS one.

[86]  Peter F Stadler,et al.  Near intron positions are reliable phylogenetic markers: an application to holometabolous insects. , 2008, Molecular biology and evolution.

[87]  Sarah J. Bourlat,et al.  The evolution of the Ecdysozoa , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[88]  David Q. Matus,et al.  Broad phylogenomic sampling improves resolution of the animal tree of life , 2008, Nature.

[89]  M. Irimia,et al.  Rare genomic characters do not support Coelomata: intron loss/gain. , 2008, Molecular biology and evolution.

[90]  Philip C. J. Donoghue,et al.  MicroRNAs and the advent of vertebrate morphological complexity , 2008, Proceedings of the National Academy of Sciences.

[91]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[92]  D. Lavrov Key transitions in animal evolution: a mitochondrial DNA perspective. , 2007, Integrative and comparative biology.

[93]  B. Degnan,et al.  The NK Homeobox Gene Cluster Predates the Origin of Hox Genes , 2007, Current Biology.

[94]  B. Schierwater,et al.  Ancient complexity of the non-Hox ANTP gene complement in the anthozoan Nematostella vectensis: implications for the evolution of the ANTP superclass. , 2006, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[95]  B. Schierwater,et al.  Axial Patterning and Diversification in the Cnidaria Predate the Hox System , 2006, Current Biology.

[96]  Gloria M. Coruzzi,et al.  OrthologID: automation of genome-scale ortholog identification within a parsimony framework , 2006, Bioinform..

[97]  B. Schierwater,et al.  A low diversity of ANTP class homeobox genes in Placozoa , 2006, Evolution & development.

[98]  石柠 My favorite animal , 2006 .

[99]  D. Rokhsar,et al.  Evidence for a microRNA expansion in the bilaterian ancestor , 2006, Development Genes and Evolution.

[100]  J. Mullikin,et al.  The cnidarian-bilaterian ancestor possessed at least 56 homeoboxes: evidence from the starlet sea anemone, Nematostella vectensis , 2006, Genome Biology.

[101]  Christoph Flamm,et al.  The expansion of the metazoan microRNA repertoire , 2006, BMC Genomics.

[102]  B. Schierwater My favorite animal, Trichoplax adhaerens. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[103]  B. Schierwater,et al.  Phylogenetic Context and Basal Metazoan Model Systems1 , 2005, Integrative and comparative biology.

[104]  J. Dopazo,et al.  Genome-scale evidence of the nematode-arthropod clade , 2005, Genome Biology.

[105]  Andrea Ender,et al.  Placozoa – no longer a phylum of one , 2004, Current Biology.

[106]  J. Finnerty,et al.  Origins of Bilateral Symmetry: Hox and Dpp Expression in a Sea Anemone , 2004, Science.

[107]  John Gatesy,et al.  Inconsistencies in arguments for the supertree approach: supermatrices versus supertrees of Crocodylia. , 2004, Systematic biology.

[108]  E. Canning,et al.  Biodiversity and evolution of the Myxozoa. , 2004, Advances in parasitology.

[109]  M. Blaxter,et al.  Hox gene evolution in nematodes: novelty conserved. , 2003, Current opinion in genetics & development.

[110]  P. Holland,et al.  Chromosomal mapping of ANTP class homeobox genes in amphioxus: piecing together ancestral genomes , 2003, Evolution & development.

[111]  Rob DeSalle,et al.  Combined support for wholesale taxic atavism in gavialine crocodylians. , 2003, Systematic biology.

[112]  M. Blaxter,et al.  Hox Gene Loss during Dynamic Evolution of the Nematode Cluster , 2003, Current Biology.

[113]  D. Posada Using MODELTEST and PAUP* to Select a Model of Nucleotide Substitution , 2003, Current protocols in bioinformatics.

[114]  B. Schierwater,et al.  Placozoa are not derived cnidarians: evidence from molecular morphology. , 2003, Molecular biology and evolution.

[115]  K. Halanych,et al.  Unsegmented Annelids? Possible Origins of Four Lophotrochozoan Worm Taxa1 , 2002, Integrative and comparative biology.

[116]  onrad,et al.  Resolution of a Supertree / Supermatrix Paradox , 2002 .

[117]  B. Schierwater,et al.  Current problems with the zootype and the early evolution of Hox genes. , 2001, The Journal of experimental zoology.

[118]  A D Baxevanis,et al.  Molecular evolution of the homeodomain family of transcription factors. , 2001, Nucleic acids research.

[119]  P. Holland Beyond the Hox: how widespread is homeobox gene clustering? , 2001, Journal of anatomy.

[120]  M. Frasch,et al.  A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[121]  S. Brenner,et al.  Late changes in spliceosomal introns define clades in vertebrate evolution. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[122]  B. Schierwater,et al.  Isolation of Hox genes from the scyphozoan Cassiopeia xamachana: implications for the early evolution of Hox genes. , 1999, The Journal of experimental zoology.

[123]  C. Vargas,et al.  Evolution of homeobox genes: Q50 Paired-like genes founded the Paired class , 1999, Development Genes and Evolution.

[124]  B. Schierwater,et al.  Homology of Hox genes and the zootype concept in early metazoan evolution. , 1998, Molecular phylogenetics and evolution.

[125]  N. M. Brooke,et al.  The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster , 1998, Nature.

[126]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[127]  J. M. W. Slack,et al.  The zootype and the phylotypic stage , 1993, Nature.

[128]  William McGinnis,et al.  Homeobox genes and axial patterning , 1992, Cell.

[129]  D. Labie,et al.  Molecular Evolution , 1991, Nature.

[130]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[131]  Ernst Haeckel Anthropogenie oder Entwicklungsgeschichte des Menschen , 1877 .