Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles.

We describe a new approach for optical imaging that combines the advantages of molecularly targeted plasmonic nanoparticles and magnetic actuation. This combination is achieved through hybrid nanoparticles with an iron oxide core surrounded by a gold layer. The nanoparticles are targeted in-vitro to epidermal growth factor receptor, a common cancer biomarker. The gold portion resonantly scatters visible light giving a strong optical signal and the superparamagnetic core provides a means to externally modulate the optical signal. The combination of bright plasmon resonance scattering and magnetic actuation produces a dramatic increase in contrast in optical imaging of cells labeled with hybrid gold/iron oxide nanoparticles.

[1]  S. Emelianov,et al.  Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound , 2006, Nanotechnology.

[2]  Jinyoung Jeong,et al.  Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles , 2006 .

[3]  J. Kehr,et al.  Magnetic resonance tracking of nanoparticle labelled neural stem cells in a rat’s spinal cord , 2006 .

[4]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[5]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[6]  Benjamin R. Jarrett,et al.  Gold-coated iron nanoparticles: a novel magnetic resonance agent for T1 and T2 weighted imaging , 2006 .

[7]  Sung-Jin Cho,et al.  Magnetic and mossbauer spectral study of core/shell structured Fe/Au nanoparticles , 2005, cond-mat/0512413.

[8]  Chad A Mirkin,et al.  Three-layer composite magnetic nanoparticle probes for DNA. , 2005, Journal of the American Chemical Society.

[9]  C. Larabell,et al.  Quantum dots as cellular probes. , 2005, Annual review of biomedical engineering.

[10]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[11]  Leon Hirsch,et al.  Gold nanoshell bioconjugates for molecular imaging in living cells. , 2005, Optics letters.

[12]  Xiaohua Huang,et al.  Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.

[13]  Amy L Oldenburg,et al.  Imaging magnetically labeled cells with magnetomotive optical coherence tomography. , 2005, Optics letters.

[14]  F. Marshall,et al.  In vivo molecular and cellular imaging with quantum dots. , 2005, Current opinion in biotechnology.

[15]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[16]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[17]  Viswanadham Garimella,et al.  Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes , 2004, Nature Biotechnology.

[18]  Mary Elizabeth Williams,et al.  Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding , 2004 .

[19]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[20]  R Richards-Kortum,et al.  Optical Systems for in Vivo Molecular Imaging of Cancer , 2003, Technology in cancer research & treatment.

[21]  C. Meares,et al.  Molecular tools for targeted imaging and therapy of cancer , 2003, Journal of molecular recognition : JMR.

[22]  J. Bacri,et al.  Rotational magnetic endosome microrheology: viscoelastic architecture inside living cells. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  J. Lakowicz,et al.  Fluorescence spectral properties of cyanine dye-labeled DNA oligomers on surfaces coated with silver particles. , 2003, Analytical biochemistry.

[24]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[25]  Michele Follen,et al.  Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. , 2003, Cancer research.

[26]  Raoul Kopelman,et al.  Magnetically modulated optical nanoprobes , 2003 .

[27]  R. Weissleder,et al.  Fluorescence molecular tomography resolves protease activity in vivo , 2002, Nature Medicine.

[28]  Michael S. Feld,et al.  Measuring cellular structure at submicrometer scale with light scattering spectroscopy , 2001 .

[29]  S. Nie,et al.  Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules , 2001, Nature Biotechnology.

[30]  Everett E. Carpenter,et al.  Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly , 2001 .

[31]  C. Contag,et al.  Advance in contrast agents, reporters, and detection. , 2001, Journal of biomedical optics.

[32]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[33]  A. Rogach,et al.  Colloidal CdTe/HgTe quantum dots with high photoluminescence quantum efficiency at room temperature , 1999 .

[34]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[35]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[36]  Michael J. Natan,et al.  Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces , 1998 .

[37]  J. Storhoff,et al.  Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. , 1997, Science.

[38]  H. Elwing,et al.  Complement activation on thiol-modified gold surfaces. , 1996, Journal of biomedical materials research.

[39]  A. Bensimon,et al.  The Elasticity of a Single Supercoiled DNA Molecule , 1996, Science.

[40]  Erkki Ruoslahti,et al.  Organ targeting In vivo using phage display peptide libraries , 1996, Nature.

[41]  P. K. Aravind,et al.  The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres , 1981 .

[42]  W. D. Geoghegan,et al.  Adsorption of horseradish peroxidase, ovomucoid and anti-immunoglobulin to colloidal gold for the indirect detection of concanavalin A, wheat germ agglutinin and goat anti-human immunoglobulin G on cell surfaces at the electron microscopic level: a new method, theory and application. , 1977, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[43]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[44]  Milton Kerker,et al.  Scattering of Electromagnetic Waves from Two Concentric Spheres , 1951 .

[45]  Peter T C So,et al.  Cell stiffness and receptors: evidence for cytoskeletal subnetworks. , 2005, American journal of physiology. Cell physiology.

[46]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[47]  J. Yguerabide,et al.  Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications , 2001, Journal of cellular biochemistry. Supplement.

[48]  F. Harris On the use of windows for harmonic analysis with the discrete Fourier transform , 1978, Proceedings of the IEEE.