CreativeAI: deep learning for graphics

In computer graphics, many traditional problems are now better handled by deep-learning based data-driven methods. In applications that operate on regular 2D domains, like image processing and computational photography, deep networks are state-of-the-art, beating dedicated hand-crafted methods by significant margins. More recently, other domains such as geometry processing, animation, video processing, and physical simulations have benefited from deep learning methods as well. The massive volume of research that has emerged in just a few years is often difficult to grasp for researchers new to this area. This tutorial gives an organized overview of core theory, practice, and graphics-related applications of deep learning.

[1]  Timo Ropinski,et al.  Monte Carlo convolution for learning on non-uniformly sampled point clouds , 2018, ACM Trans. Graph..

[2]  Rob Fergus,et al.  Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-scale Convolutional Architecture , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Subhransu Maji,et al.  SPLATNet: Sparse Lattice Networks for Point Cloud Processing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[4]  Leonidas J. Guibas,et al.  Learning Shape Abstractions by Assembling Volumetric Primitives , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).