Subcellular connectivity underlies pathway-specific signaling in the nucleus accumbens

[1]  E. Simpson Faculty Opinions recommendation of Distinct roles for direct and indirect pathway striatal neurons in reinforcement. , 2012 .

[2]  J. P. Little,et al.  Subcellular Synaptic Connectivity of Layer 2 Pyramidal Neurons in the Medial Prefrontal Cortex , 2012, The Journal of Neuroscience.

[3]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[4]  Alice M Stamatakis,et al.  Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. , 2011, Nature.

[5]  Joshua L. Plotkin,et al.  Synaptically driven state transitions in distal dendrites of striatal spiny neurons , 2011 .

[6]  Murtaza Z Mogri,et al.  Cell Type–Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward , 2010, Science.

[7]  S. Nakanishi,et al.  Distinct Roles of Synaptic Transmission in Direct and Indirect Striatal Pathways to Reward and Aversive Behavior , 2010, Neuron.

[8]  J. Morrison,et al.  The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens , 2010, Trends in Neurosciences.

[9]  A. Grace,et al.  Critical Role of the Prefrontal Cortex in the Regulation of Hippocampus–Accumbens Information Flow , 2008, The Journal of Neuroscience.

[10]  B. Gloss,et al.  Drd1a-tdTomato BAC Transgenic Mice for Simultaneous Visualization of Medium Spiny Neurons in the Direct and Indirect Pathways of the Basal Ganglia , 2008, The Journal of Neuroscience.

[11]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[12]  Douglas B. Ehlenberger,et al.  Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images , 2006, Nature Protocols.

[13]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[14]  A. Grace,et al.  Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior , 2005, Nature Neuroscience.

[15]  B. Sabatini,et al.  State-Dependent Calcium Signaling in Dendritic Spines of Striatal Medium Spiny Neurons , 2004, Neuron.

[16]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[17]  Wade G. Regehr,et al.  Quantal events shape cerebellar interneuron firing , 2002, Nature Neuroscience.

[18]  S. Totterdell,et al.  Hippocampal and prefrontal cortical inputs monosynaptically converge with individual projection neurons of the nucleus accumbens , 2002, The Journal of comparative neurology.

[19]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[20]  D. Jaffe,et al.  Passive normalization of synaptic integration influenced by dendritic architecture. , 1999, Journal of neurophysiology.

[21]  H. Groenewegen,et al.  Convergence and Segregation of Ventral Striatal Inputs and Outputs , 1999, Annals of the New York Academy of Sciences.

[22]  A. Grace,et al.  Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[24]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[25]  A. Grace,et al.  Cortico-Basal Ganglia Reward Network: Microcircuitry , 2010, Neuropsychopharmacology.

[26]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[27]  D. Finch,et al.  Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens , 1996, Hippocampus.