Light-driven robotics for nanoscopy

The science fiction inspired shrinking of macro-scale robotic manipulation and handling down to the micro- and nanoscale regime opens new doors for exploiting the forces and torques of light for micro- and nanoscopic probing, actuation and control. Advancing light-driven micro-robotics requires the optimization of optical forces and torques that, in turn, requires optimization of the underlying light-matter interaction. This report is two-fold desribing the new use of proprietary strongholds we currently are harnessing in the Programmable Phase Optics in Denmark on new means of sculpting of both light and matter for robotically probing at the smallest biological length scales.

[1]  Jesper Glückstad,et al.  Matched-filtering generalized phase contrast using LCoS pico-projectors for beam-forming. , 2012, Optics express.

[2]  G. Whitesides The 'right' size in nanobiotechnology , 2003, Nature Biotechnology.

[3]  Jesper Glückstad,et al.  Generalized Phase Contrast:: Applications in Optics and Photonics , 2009 .

[4]  Peter John Rodrigo,et al.  GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator. , 2006, Optics express.

[5]  J. Glückstad,et al.  Wave-guided optical waveguides. , 2012, Optics express.

[6]  Graham M. Gibson,et al.  Assembly and force measurement with SPM-like probes in holographic optical tweezers , 2009 .

[7]  J. Glückstad,et al.  Matched filtering Generalized Phase Contrast using binary phase for dynamic spot- and line patterns in biophotonics and structured lighting. , 2013, Optics express.

[8]  Jesper Glückstad,et al.  Optical manipulation: sculpting the object , 2011 .

[9]  Yan Li,et al.  Reduction in feature size of two-photon polymerization using SCR500 , 2007 .

[10]  S. Hell Far-field optical nanoscopy , 2010 .

[11]  Jesper Glückstad,et al.  Combining Generalized Phase Contrast with matched filtering into a versatile beam shaping approach , 2010 .

[12]  Pál Ormos,et al.  Optical forces through guided light deflections. , 2013, Optics express.

[13]  Peter Bøggild,et al.  Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps. , 2005, Optics express.

[14]  Jesper Glückstad,et al.  Reconfigurable ternary-phase array illuminator based on the generalised phase contrast method , 2000 .

[15]  M J Padgett,et al.  Calibration of optically trapped nanotools , 2010, Nanotechnology.

[16]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[17]  Jesper Glückstad,et al.  Sorting particles with light , 2004, Nature materials.

[18]  Jeppe Seidelin Dam,et al.  Independent trapping, manipulation and characterization by an all-optical biophotonics workstation , 2008 .

[19]  Pál Ormos,et al.  Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies. , 2009, Optics express.

[20]  E. Isacoff,et al.  Scanless two-photon excitation of channelrhodopsin-2 , 2010, Nature Methods.

[21]  J. Glückstad,et al.  Gearing up for optical microrobotics: micromanipulation and actuation of synthetic microstructures by optical forces , 2013 .

[22]  Jesper Glückstad Phase contrast image synthesis , 1996 .

[23]  J. Glückstad Adaptive array illumination and structured light generated by spatial zero-order self-phase modulation in a Kerr medium , 1995 .