Are output growth-rate distributions fat-tailed? some evidence from OECD countries

This work explores some distributional properties of aggregate output growth-rate time series. We show that, in the majority of OECD countries, output growth-rate distributions are well-approximated by symmetric exponential-power densities with tails much fatter than those of a Gaussian. Fat tails robustly emerge in output growth rates independently of: (i) the way we measure aggregate output; (ii) the family of densities employed in the estimation; (iii) the length of time lags used to compute growth rates. We also show that fat tails still characterize output growth-rate distributions even after one washes away outliers, autocorrelation and heteroscedasticity.

[1]  Murad S. Taqqu,et al.  A Practical Guide to Heavy Tails: Statistical Techniques for Analysing Heavy-Tailed Distributions , 1998 .

[2]  Simon M. Potter A Nonlinear Approach to US GNP , 1995 .

[3]  H. Stanley,et al.  The growth of business firms: theoretical framework and empirical evidence. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  J. Stock,et al.  Business Cycle Fluctuations in U.S. Macroeconomic Time Series , 1998 .

[5]  J. Galí,et al.  The Science of Monetary Policy: A New Keynesian Perspective , 1999 .

[6]  J. Temple Growth Regressions and What the Textbooks Don't Tell You , 1999 .

[7]  Boyan Jovanovic,et al.  Demand-Driven Innovation and Spatial Competition Over Time , 1987 .

[8]  P. Phillips,et al.  Testing the covariance stationarity of heavy-tailed time series: An overview of the theory with applications to several financial datasets , 1994 .

[9]  G. Agrò Maximum likelihood estimation for the exponential power function parameters , 1995 .

[10]  J. Temple Growth Econometrics , 2001, Oxford Research Encyclopedia of Economics and Finance.

[11]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[12]  Olivier J. Blanchard,et al.  The Long and Large Decline in U.S. Output Volatility , 2001 .

[13]  William A. Brock,et al.  Scaling in Economics: A Reader's Guide , 1999 .

[14]  Steven N. Durlauf,et al.  Chapter 8 Growth Econometrics , 2005 .

[15]  Charles R. Nelson,et al.  The Uncertain Trend in U.S. GDP , 2000 .

[16]  Nonlinear Time Series Modelling: An Introduction , 1999 .

[17]  C. Nelson,et al.  Trends and random walks in macroeconmic time series: Some evidence and implications , 1982 .

[18]  J. Stock,et al.  Chapter 1 Business cycle fluctuations in us macroeconomic time series , 1999 .

[19]  Daniel E. Geer,et al.  Convergence , 2021, IEEE Secur. Priv..

[20]  G. Thoma,et al.  The Growth of Industrial Sectors: Theoretical Insights and Empirical Evidence from U.S. Manufacturing ⁄ , 2006 .

[21]  Sergey V. Buldyrev,et al.  Scaling behavior in economics: The problem of quantifying company growth , 1997 .

[22]  H. Stanley,et al.  Scaling the volatility of GDP growth rates , 1998 .

[23]  P. Perron,et al.  Trends and random walks in macroeconomic time series : Further evidence from a new approach , 1988 .

[24]  Requiem for the unit root in per capita real GDP? Additional evidence from historical data , 2005 .

[25]  J. Cochrane Permanent and Transitory Components of GNP and Stock Prices , 1994 .

[26]  L. Lima,et al.  Further investigation of the uncertain trend in US GDP , 2008 .

[27]  J. L. Nolan Stable Distributions. Models for Heavy Tailed Data , 2001 .

[28]  Peter Rousseeuw,et al.  Econometric Applications of High-Breakdown Robust Regression Techniques , 2017, 1709.00181.

[29]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[30]  Nadia Jacoby,et al.  Corporate growth and industrial dynamics: evidence from French manufacturing , 2005 .

[31]  Giulio Bottazzi Subbotools User's Manual , 2004 .

[32]  V. Zolotarev,et al.  Chance and Stability, Stable Distributions and Their Applications , 1999 .

[33]  T. Lux The limiting extremal behaviour of speculative returns: an analysis of intra-daily data from the Frankfurt Stock Exchange , 1998 .

[34]  A. McKay,et al.  The Brevity and Violence of Contractions and Expansions , 2006 .

[35]  John H. Cochrane,et al.  How Big Is the Random Walk in GNP? , 1988, Journal of Political Economy.

[36]  R. King,et al.  Chapter 14 Resuscitating real business cycles , 1999 .

[37]  V. Plerou,et al.  A theory of power-law distributions in financial market fluctuations , 2003, Nature.

[38]  E. Prescott,et al.  The Uncertain Unit Root in Real GNP , 2007 .

[39]  S. Rebelo,et al.  Resuscitating Real Business Cycles , 2000 .

[40]  H. Eugene Stanley,et al.  Universal features in the growth dynamics of complex organizations , 1998, cond-mat/9804100.

[41]  Michal Horváth Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks , 1997 .

[42]  Richard Schmalensee,et al.  Gaussian Demand and Commodity Bundling , 1984 .

[43]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[44]  J. Sutton Gibrat's Legacy , 1996 .

[45]  R. D'Agostino Transformation to normality of the null distribution of g1 , 1970 .

[46]  Agustín Maravall,et al.  Automatic Modeling Methods for Univariate Series , 1998 .

[47]  Edgar Kaufmann,et al.  Selecting the optimal sample fraction in univariate extreme value estimation , 1998 .

[48]  L. Amaral,et al.  Scaling behaviour in the growth of companies , 1996, Nature.

[49]  L. Haan,et al.  Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation , 2000 .

[50]  Rustam Ibragimov,et al.  ON THE ROBUSTNESS OF ECONOMIC MODELS TO HEAVY-TAILEDNESS ASSUMPTIONS , 2004 .

[51]  Margaret Mary McConnell,et al.  Output Fluctuations in the United States: What Has Changed Since the Early 1980s? , 1998 .

[52]  Giovanni Dosi,et al.  Income Levels and Income Growth: Some New Cross-Country Evidence and some Interpretative Puzzles , 2004 .

[53]  Mario Forni,et al.  Aggregation of linear dynamic microeconomic models , 1999 .

[54]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[55]  F. J. Anscombe,et al.  Distribution of the Kurtosis Statistic b2 for Normal Samples. , 1983 .

[56]  A. Secchi,et al.  Why are distributions of firm growth rates tent-shaped? , 2003 .

[57]  R. D'Agostino,et al.  Goodness-of-Fit-Techniques , 1987 .

[58]  A. Secchi,et al.  Maximum Likelihood Estimation of the Symmetric and Asymmetric Exponential Power Distribution , 2006 .

[59]  Victor M. Yakovenko,et al.  Exponential distribution of financial returns at mesoscopic time lags: a new stylized fact , 2004 .

[60]  W. Brock,et al.  Is the business cycle characterized by deterministic chaos , 1988 .

[61]  Lon-Mu Liu,et al.  Joint Estimation of Model Parameters and Outlier Effects in Time Series , 1993 .

[62]  Thomas B. Fomby,et al.  Shifting trends, segmented trends, and infrequent permanent shocks , 1991 .

[63]  J. Scheinkman,et al.  Self-Organized Criticality and Economic Fluctuations , 1994 .

[64]  A. Secchi,et al.  Common Properties and Sectoral Specificities in the Dynamics of U.S. Manufacturing Companies , 2003 .

[65]  A. Secchi,et al.  Explaining the distribution of firm growth rates , 2006 .

[66]  Chang-Jin Kim,et al.  The Less Volatile U.S. Economy : A Bayesian Investigation of Timing, Breadth and Potential Explanations , 2001 .

[67]  Glenn D. Rudebusch The Uncertain Unit Root in Real GNP , 1992 .

[68]  V. Zolotarev One-dimensional stable distributions , 1986 .

[69]  Chang-Jin Kim,et al.  The Less-Volatile U.S. Economy , 2001 .

[70]  Robin L. Lumsdaine,et al.  Unit roots, postwar slowdowns and long-run growth: Evidence from two structural breaks , 1998 .

[71]  F. Canova Detrending and business cycle facts , 1998 .

[72]  Jonathan R.W. Temple,et al.  Robustness Tests of the Augmented Solow Model , 1998 .

[73]  Olivier V. Pictet,et al.  Hill, bootstrap and jackknife estimators for heavy tails , 1998 .