Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem
暂无分享,去创建一个
[1] M. Melamed,et al. Detection , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..
[2] L. Pezzè,et al. Bayesian Quantum Multiphase Estimation Algorithm , 2020, Physical Review Applied.
[3] P. Lam,et al. Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements , 2020, npj Quantum Information.
[4] M. Tsang. Physics-inspired forms of the Bayesian Cramér-Rao bound , 2020, Physical Review A.
[5] Augusto Smerzi,et al. A machine learning approach to Bayesian parameter estimation , 2020, npj Quantum Information.
[6] Rafal Demkowicz-Dobrzanski,et al. Multi-parameter estimation beyond quantum Fisher information , 2020, Journal of Physics A: Mathematical and Theoretical.
[7] Masahito Hayashi,et al. Quantum state estimation with nuisance parameters , 2019, Journal of Physics A: Mathematical and Theoretical.
[8] A. Holevo. Quantum Systems, Channels, Information , 2019 .
[9] A. Datta,et al. Quantum Semiparametric Estimation , 2019, 1906.09871.
[10] Jesús Rubio,et al. Bayesian multiparameter quantum metrology with limited data , 2019, Physical Review A.
[11] Dominic W. Berry,et al. Bayesian estimation for quantum sensing in the absence of single-shot detection , 2018, Physical Review B.
[12] A. Fujiwara,et al. Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics , 2018, Bernoulli.
[13] Masahito Hayashi,et al. Attaining the Ultimate Precision Limit in Quantum State Estimation , 2018, Communications in Mathematical Physics.
[14] Mankei Tsang,et al. Quantum Weiss-Weinstein bounds for quantum metrology , 2015, 1511.08974.
[15] Marcin Jarzyna,et al. True precision limits in quantum metrology , 2014, 1407.4805.
[16] Richard D. Gill,et al. Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.
[17] Mankei Tsang,et al. Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.
[18] Masahito Hayashi,et al. Asymptotic performance of optimal state estimation in qubit system , 2008 .
[19] M. Hayashi,et al. Quantum information with Gaussian states , 2007, 0801.4604.
[20] F. Kschischang,et al. Roadmap of optical communications , 2015, 1507.05157.
[21] A. Jenčová,et al. Local Asymptotic Normality in Quantum Statistics , 2006, quant-ph/0606213.
[22] J. Kahn,et al. Local asymptotic normality for qubit states , 2005, quant-ph/0512075.
[23] H. Nagaoka. A Generalization of the Simultaneous Diagonalization of Hermitian Matrices and its Relation to Quantum Estimation Theory , 2005 .
[24] Hiroshi Nagaoka,et al. A New Approach to Cramér-Rao Bounds for Quantum State Estimation , 2005 .
[25] R. Schumann. Quantum Information Theory , 2000, quant-ph/0010060.
[26] R. Gill,et al. Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .
[27] Alexander Semenovich Holevo,et al. Commutation superoperator of a state and its applications to the noncommutative statistics , 1977 .
[28] A. Holevo. Statistical decision theory for quantum systems , 1973 .
[29] Horace P. Yuen,et al. Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.
[30] Steward D. Personick,et al. Application of quantum estimation theory to analog communication over quantum channels , 1971, IEEE Trans. Inf. Theory.
[31] Stewart D. Personick,et al. Efficient analog communication over quantum channels. , 1970 .
[32] C. W. Helstrom,et al. Minimum mean-squared error of estimates in quantum statistics , 1967 .
[33] H. V. Trees,et al. Part I. Detection, Estimation, and Linear Modulation Theory , 2013 .
[34] A. Isar,et al. ABOUT QUANTUM-SYSTEMS , 2004 .
[35] L. Ballentine,et al. Probabilistic and Statistical Aspects of Quantum Theory , 1982 .
[36] A. S. Kholevo. Investigations in the general theory of statistical decisions , 1978 .
[37] A. Holevo. Noncommutative analogues of the Cramér-Rao inequality in the quantum measurement theory , 1976 .