Bayesian Nagaoka-Hayashi Bound for Multiparameter Quantum-State Estimation Problem

In this work we propose a Bayesian version of the Nagaoka-Hayashi bound when estimating a parametric family of quantum states. This lower bound is a generalization of a recently proposed bound for point estimation to Bayesian estimation. We then show that the proposed lower bound can be efficiently computed as a semidefinite programming problem. As a lower bound, we also derive a Bayesian version of the Holevo-type bound from the Bayesian Nagaoka-Hayashi bound. Lastly, we prove that the new lower bound is tighter than the Bayesian quantum Cramer-Rao bounds.

[1]  M. Melamed,et al.  Detection , 2018, Encyclopedia of Social Network Analysis and Mining. 2nd Ed..

[2]  L. Pezzè,et al.  Bayesian Quantum Multiphase Estimation Algorithm , 2020, Physical Review Applied.

[3]  P. Lam,et al.  Efficient computation of the Nagaoka–Hayashi bound for multiparameter estimation with separable measurements , 2020, npj Quantum Information.

[4]  M. Tsang Physics-inspired forms of the Bayesian Cramér-Rao bound , 2020, Physical Review A.

[5]  Augusto Smerzi,et al.  A machine learning approach to Bayesian parameter estimation , 2020, npj Quantum Information.

[6]  Rafal Demkowicz-Dobrzanski,et al.  Multi-parameter estimation beyond quantum Fisher information , 2020, Journal of Physics A: Mathematical and Theoretical.

[7]  Masahito Hayashi,et al.  Quantum state estimation with nuisance parameters , 2019, Journal of Physics A: Mathematical and Theoretical.

[8]  A. Holevo Quantum Systems, Channels, Information , 2019 .

[9]  A. Datta,et al.  Quantum Semiparametric Estimation , 2019, 1906.09871.

[10]  Jesús Rubio,et al.  Bayesian multiparameter quantum metrology with limited data , 2019, Physical Review A.

[11]  Dominic W. Berry,et al.  Bayesian estimation for quantum sensing in the absence of single-shot detection , 2018, Physical Review B.

[12]  A. Fujiwara,et al.  Noncommutative Lebesgue decomposition and contiguity with applications in quantum statistics , 2018, Bernoulli.

[13]  Masahito Hayashi,et al.  Attaining the Ultimate Precision Limit in Quantum State Estimation , 2018, Communications in Mathematical Physics.

[14]  Mankei Tsang,et al.  Quantum Weiss-Weinstein bounds for quantum metrology , 2015, 1511.08974.

[15]  Marcin Jarzyna,et al.  True precision limits in quantum metrology , 2014, 1407.4805.

[16]  Richard D. Gill,et al.  Quantum local asymptotic normality based on a new quantum likelihood ratio , 2012, 1210.3749.

[17]  Mankei Tsang,et al.  Ziv-Zakai error bounds for quantum parameter estimation. , 2011, Physical review letters.

[18]  Masahito Hayashi,et al.  Asymptotic performance of optimal state estimation in qubit system , 2008 .

[19]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[20]  F. Kschischang,et al.  Roadmap of optical communications , 2015, 1507.05157.

[21]  A. Jenčová,et al.  Local Asymptotic Normality in Quantum Statistics , 2006, quant-ph/0606213.

[22]  J. Kahn,et al.  Local asymptotic normality for qubit states , 2005, quant-ph/0512075.

[23]  H. Nagaoka A Generalization of the Simultaneous Diagonalization of Hermitian Matrices and its Relation to Quantum Estimation Theory , 2005 .

[24]  Hiroshi Nagaoka,et al.  A New Approach to Cramér-Rao Bounds for Quantum State Estimation , 2005 .

[25]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[26]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[27]  Alexander Semenovich Holevo,et al.  Commutation superoperator of a state and its applications to the noncommutative statistics , 1977 .

[28]  A. Holevo Statistical decision theory for quantum systems , 1973 .

[29]  Horace P. Yuen,et al.  Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.

[30]  Steward D. Personick,et al.  Application of quantum estimation theory to analog communication over quantum channels , 1971, IEEE Trans. Inf. Theory.

[31]  Stewart D. Personick,et al.  Efficient analog communication over quantum channels. , 1970 .

[32]  C. W. Helstrom,et al.  Minimum mean-squared error of estimates in quantum statistics , 1967 .

[33]  H. V. Trees,et al.  Part I. Detection, Estimation, and Linear Modulation Theory , 2013 .

[34]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[35]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[36]  A. S. Kholevo Investigations in the general theory of statistical decisions , 1978 .

[37]  A. Holevo Noncommutative analogues of the Cramér-Rao inequality in the quantum measurement theory , 1976 .