Uniaxially Aligned 1D Sandwich-Molecular Wires: Electronic Structure and Magnetism

[1]  J. Pascual,et al.  Metal–Organic Superlattices Induced by Long-Range Repulsive Interactions on a Metal Surface , 2021, The Journal of Physical Chemistry C.

[2]  K. Ernst,et al.  Autocatalytic Surface Explosion Chemistry of 2D Metal–Organic Frameworks , 2021 .

[3]  E. Weschke,et al.  Magnetic Hysteresis at 10 K in Single Molecule Magnet Self‐Assembled on Gold , 2021, Advanced science.

[4]  M. Chiesa,et al.  Exploring the Organometallic Route to Molecular Spin Qubits: the [CpTi(cot)] case. , 2020, Angewandte Chemie.

[5]  Jie Li,et al.  Spin Transport Properties of One-Dimensional Benzene Ligand Organobimetallic Sandwich Molecular Wires , 2020, ACS omega.

[6]  S. Loth,et al.  Quantum dynamics of a single molecule magnet on superconducting Pb(111) , 2020, Nature Materials.

[7]  Lili Liu,et al.  3d Transition Metal-Metallofullerene-Ligand Molecular Wires: Robust One-Dimensional Antiferromagnetic Semiconductors , 2019 .

[8]  T. Ghanty,et al.  Prediction of a Nine−Membered Aromatic Heterocyclic 1,4,7−triazacyclononatetraenyl anion and its Sandwich Complexes with Divalent Lanthanides , 2019, ChemistrySelect.

[9]  E. Annese,et al.  The actual electronic band structure of a rubrene single crystal , 2019, Scientific Reports.

[10]  S. Sanvito Molecular spintronics. , 2019, Chemical Society reviews.

[11]  Timur K. Kim,et al.  Emerging 2D-ferromagnetism and strong spin-orbit coupling at the surface of valence-fluctuating EuIr2Si2 , 2019, npj Quantum Materials.

[12]  K. Ollefs,et al.  Europium Cyclooctatetraene Nanowire Carpets: A Low-Dimensional, Organometallic, and Ferromagnetic Insulator. , 2019, The journal of physical chemistry letters.

[13]  J. Ortega,et al.  Electronic Structure Tunability by Periodic meta-Ligand Spacing in One-Dimensional Organic Semiconductors. , 2018, ACS nano.

[14]  Yong Pei,et al.  Electronic Structure and Spin Transport Properties of a New Class of Semiconductor Surface-Confined One-Dimensional Half-Metallic [Eu-(CnHn–2)]N (n = 7–9) Sandwich Compounds and Molecular Wires: First Principle Studies , 2018, The Journal of Physical Chemistry C.

[15]  A. Arnau,et al.  Magnetic Properties of Metal–Organic Coordination Networks Based on 3d Transition Metal Atoms , 2018, Molecules.

[16]  A. Arnau,et al.  Exploring the relation between intramolecular conjugation and band dispersion in one-dimensional polymers , 2017 .

[17]  T. Michely,et al.  On-Surface Synthesis of Sandwich Molecular Nanowires on Graphene. , 2017, Journal of the American Chemical Society.

[18]  O. Yazyev,et al.  Two-Orbital Kondo Screening in a Self-Assembled Metal-Organic Complex. , 2017, ACS nano.

[19]  T. Michely,et al.  Core level shifts of intercalated graphene , 2016 .

[20]  M. Pivetta,et al.  Giant Hysteresis of Single‐Molecule Magnets Adsorbed on a Nonmagnetic Insulator , 2016, Advanced materials.

[21]  Jinlan Wang,et al.  Theoretical Studies of Sandwich Molecular Wires with Europium and Boratacyclooctatetraene Ligand and the Structure on a H-Ge(001)-2×1 Surface , 2016 .

[22]  J. Ortega,et al.  Tunable Band Alignment with Unperturbed Carrier Mobility of On-Surface Synthesized Organic Semiconducting Wires , 2016, ACS nano.

[23]  Yang Wang,et al.  Surface-Supported Robust 2D Lanthanide-Carboxylate Coordination Networks. , 2015, Small.

[24]  F. Rosei,et al.  Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires , 2015, Nature Communications.

[25]  Jinlan Wang,et al.  The bonding characteristics and electronic and magnetic properties of organometallic sandwich clusters and nanowires , 2015 .

[26]  K. Schouteden,et al.  Probing Magnetism in 2D Molecular Networks after in Situ Metalation by Transition Metal Atoms. , 2015, The journal of physical chemistry letters.

[27]  A. Nakajima,et al.  Formation and electronic structures of organoeuropium sandwich nanowires. , 2014, The journal of physical chemistry. A.

[28]  Lili Liu,et al.  Tunable Electronic and Magnetic Properties of Boron/Nitrogen-Doped BzTMCp*TMBz/CpTMCp*TMCp Clusters and One-Dimensional Infinite Molecular Wires , 2014 .

[29]  J. Barth,et al.  Supramolecular assembly of interfacial nanoporous networks with simultaneous expression of metal-organic and organic-bonding motifs. , 2013, Chemistry.

[30]  J. Long,et al.  A N2(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K. , 2011, Journal of the American Chemical Society.

[31]  B. Gu,et al.  Ab initio Study of Half-Metallicity and Magnetism of Complex Organometallic Molecular Wires , 2011 .

[32]  Jinlong Yang,et al.  Efficient organometallic spin filter based on Europium-cyclooctatetraene wire , 2009 .

[33]  Jinlan Wang,et al.  Theoretical studies on structural, magnetic, and spintronic characteristics of sandwiched Eu(n)COT(n+1) (n = 1-4) clusters. , 2009, ACS nano.

[34]  T. Michely,et al.  Selecting a single orientation for millimeter sized graphene sheets , 2009, 0907.3580.

[35]  S. Sanvito,et al.  Novel one-dimensional organometallic half metals: vanadium-cyclopentadienyl, vanadium-cyclopentadienyl-benzene, and vanadium-anthracene wires. , 2008, Nano letters (Print).

[36]  Lei Shen,et al.  Charge-transfer-based mechanism for half-metallicity and ferromagnetism in one-dimensional organometallic sandwich molecular wires. , 2008, Journal of the American Chemical Society.

[37]  Lei Shen,et al.  One-dimensional iron-cyclopentadienyl sandwich molecular wire with half metallic, negative differential resistance and high-spin filter efficiency properties. , 2008, Journal of the American Chemical Society.

[38]  C. Ambrosch-Draxl,et al.  Intra- and Intermolecular Band Dispersion in an Organic Crystal , 2007, Science.

[39]  Wenhua Zhang,et al.  Valence band of metal europium studied with synchrotron radiation photoemission spectroscopy , 2007 .

[40]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[41]  K. Kern,et al.  Surface-assisted assembly of 2D metal-organic networks that exhibit unusual threefold coordination symmetry. , 2007, Angewandte Chemie.

[42]  K. Koyasu,et al.  Lanthanide organometallic sandwich nanowires: formation mechanism. , 2005, The journal of physical chemistry. A.

[43]  S. Hoffmann,et al.  An undulator-based spherical grating monochromator beamline for angle-resolved photoemission spectroscopy , 2004 .

[44]  A. Nakajima,et al.  A Novel Network Structure of Organometallic Clusters in Gas Phase , 2000 .

[45]  S. Nagao,et al.  Multiple-Decker Sandwich Complexes of Lanthanide−1,3,5,7-Cyclooctatetraene [Lnn(C8H8)m] (Ln = Ce, Nd, Eu, Ho, and Yb); Localized Ionic Bonding Structure , 1998 .

[46]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[47]  F. Jollet,et al.  The importance of the magnetic dipole term in magneto-circular x-ray absorption dichroism for 3d transition metal compounds , 1996 .

[48]  Axel D. Becke,et al.  On the large‐gradient behavior of the density functional exchange energy , 1986 .

[49]  A. Nakajima,et al.  Electronic Properties of Transition Metal-Benzene Sandwich Clusters , 2020 .

[50]  A. Nakajima,et al.  Stern-gerlach study of multidecker lanthanide-cyclooctatetraene sandwich clusters. , 2008, The journal of physical chemistry. A.