On the xed parameter complexity of graph enumeration problems de nable in monadic second-order logic

We discuss the parametrized complexity of counting and evaluation problems on graphs where the range of counting is de nable in monadic second-order logic (MSOL). We show that for bounded tree-width these problems are solvable in polynomial time. The same holds for bounded clique width in the cases, where the decomposition, which establishes the bound on the clique-width, can be computed in polynomial time and for problems expressible by monadic second-order formulas without edge set quanti cation. Such quanti cations are allowed in the case of graphs with bounded tree-width. As applications we discuss in detail how this a ects the parametrized complexity of the permanent and the hamiltonian of a matrix, and more generally, various generating functions of MSOL de nable graph properties. Finally, our results are also applicable to SAT and ]SAT . ? 2001 Elsevier Science B.V. All rights reserved.

[1]  Marek Karpinski,et al.  The matching problem for bipartite graphs with polynomially bounded permanents is in NC , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[2]  K. V. Subrahmanyam,et al.  Descriptive Complexity of #P Functions , 1995, J. Comput. Syst. Sci..

[3]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[4]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[5]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[6]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[7]  Klaus Meer,et al.  Descriptive complexity theory over the real numbers , 1995, STOC '95.

[8]  R. Diestel Graph Decompositions: A Study in Infinite Graph Theory , 1990 .

[9]  Martin Grohe,et al.  Definability and Descriptive Complexity on Databases of Bounded Tree-Width , 1999, ICDT.

[10]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[11]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[12]  Vassilis Giakoumakis,et al.  On P4-tidy graphs , 1997, Discrete Mathematics & Theoretical Computer Science.

[13]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[14]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[15]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .

[16]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[17]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[18]  Vassilis Giakoumakis,et al.  On Extended P4-Reducible and Extended P4-Sparse Graphs , 1997, Theor. Comput. Sci..

[19]  Klaus Meer,et al.  POLYNOMIALS OF BOUNDED TREE-WIDTH , 2002 .

[20]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[21]  Bruno Courcelle,et al.  A Logical Characterization of the Sets of Hypergraphs Defined by Hyperedge Replacement Grammars , 1995, Math. Syst. Theory.

[22]  H. James Hoover,et al.  Limits to parallel computation , 1995 .

[23]  H. L. Bodlaender,et al.  Treewidth: Algorithmic results and techniques , 1997 .

[24]  Johann A. Makowsky,et al.  Arity vs. Alternation in Second Order Logic , 1994, LFCS.

[25]  Klaus Meer On the Complexity of Quadratic Programming in Real Number Models of Computation , 1994, Theor. Comput. Sci..

[26]  Alexander I. Barvinok,et al.  Two Algorithmic Results for the Traveling Salesman Problem , 1996, Math. Oper. Res..

[27]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[28]  S. Feferman,et al.  The first order properties of products of algebraic systems , 1959 .

[29]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[30]  Klaus Meer,et al.  On the Complexity of Combinatorial and Metafinite Generating Functions of Graph Properties in the Computational Model of Blum, Shub and Smale , 2000, CSL.

[31]  Tomás Feder,et al.  Monotone monadic SNP and constraint satisfaction , 1993, STOC.

[32]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[33]  Stephan Olariu,et al.  On the p-connectedness of Graphs - A Survey , 1999, Discret. Appl. Math..

[34]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[35]  Béla Bollobás,et al.  A Tutte Polynomial for Coloured Graphs , 1999, Combinatorics, Probability and Computing.

[36]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[37]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[38]  Stephan Olariu,et al.  On the Isomorphism of Graphs with Few P4s , 1995, WG.

[39]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[40]  Johann A. Makowsky,et al.  On the Clique-Width of Graphs with Few P4's , 1999, Int. J. Found. Comput. Sci..

[41]  Stephan Olariu,et al.  A Linear-Time Recognition Algorithm for P4-Reducible Graphs , 1989, Theor. Comput. Sci..

[42]  A. Makowsky Polynomials of bounded tree-widthJanos , 2000 .

[43]  Yuri Gurevich Modest Theory of Short Chains. I , 1979, J. Symb. Log..

[44]  Phokion G. Kolaitis,et al.  Conjunctive-query containment and constraint satisfaction , 1998, PODS.

[45]  Luitpold Babel Recognition and Isomorphism of Tree-like P4-connected Graphs , 2000, Discret. Appl. Math..

[46]  Stephan Olariu,et al.  Linear Time optimization Algorithms for P4-sparse Graphs , 1995, Discret. Appl. Math..

[47]  J. A. Makowsky Model theory and computer science: an appetizer , 1993, LICS 1993.

[48]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..