SELF-ASSEMBLED SEMICONDUCTOR QUANTUM DOTS: Fundamental Physics and Device Applications

▪ Abstract As a result of their fully quantized electronic states and high radiative efficiencies, self-assembled quantum dots have enabled major advances in fundamental physics studies of zero-dimensionality semiconductor systems and in a variety of novel device applications. This article reviews some of the more important recent advances, covering the study and application of both ensembles and single quantum dots. It shows that a comprehensive understanding of the dot electronic structure and dynamical carrier processes is possible and that this knowledge underpins the various device applications.

[1]  Bauer,et al.  Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots , 2000, Physical review letters.

[2]  J. Hvam,et al.  Long lived coherence in self-assembled quantum dots. , 2001, Physical review letters.

[3]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[4]  Y. Arakawa,et al.  Near-field coherent excitation spectroscopy of InGaAs/GaAs self-assembled quantum dots , 2000 .

[5]  A. P. Vasil’ev,et al.  High performance quantum dot lasers on GaAs substrates operating in 1.5 /spl mu/m range , 2003 .

[6]  Pawel Hawrylak,et al.  Response spectra from mid- to far-infrared, polarization behaviors, and effects of electron numbers in quantum-dot photodetectors , 2003 .

[7]  P. G. Piva,et al.  Enhanced degradation resistance of quantum dot lasers to radiation damage , 2000 .

[8]  P. Bhattacharya,et al.  Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature , 2002 .

[9]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[10]  M. Hopkinson,et al.  Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. , 2001, Physical review letters.

[11]  Y. Okada,et al.  Two-Dimensional In0.4Ga0.6As/GaAs Quantum Dot Superlattices Realized by Self-Organized Epitaxial Growth , 1999 .

[12]  H. Kamada,et al.  Exciton Rabi oscillation in a single quantum dot. , 2001, Physical review letters.

[13]  Andrew J. Shields,et al.  Quantum dots as a photon source for passive quantum key encoding , 2002 .

[14]  P. Bhattacharya,et al.  Observation of phonon bottleneck in quantum dot electronic relaxation. , 2001, Physical review letters.

[15]  P. Petroff,et al.  Stark-shift modulation absorption spectroscopy of single quantum dots , 2003 .

[16]  E. Dekel,et al.  Carrier-carrier correlations in an optically excited single semiconductor quantum dot , 1999, cond-mat/9904334.

[17]  Johann Peter Reithmaier,et al.  ELECTRON AND HOLE G FACTORS AND EXCHANGE INTERACTION FROM STUDIES OF THE EXCITON FINE STRUCTURE IN IN0.60GA0.40AS QUANTUM DOTS , 1999 .

[18]  G. Medeiros-Ribeiro,et al.  Coulomb interactions in small charge-tunable quantum dots: A simple model , 1998 .

[19]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[20]  A. Kavokin,et al.  Zero-field spin quantum beats in charged quantum dots , 2002 .

[21]  G. Abstreiter,et al.  Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields , 2001 .

[22]  C. Voisin,et al.  Photoluminescence up-conversion in single self-assembled InAs/GaAs quantum dots. , 2001, Physical review letters.

[23]  F. Henneberger,et al.  Single-hole spin relaxation in a quantum dot , 2003 .

[24]  M. Hopkinson,et al.  Observation of multicharged excitons and biexcitons in a single InGaAs quantum dot , 2001 .

[25]  D. Bimberg,et al.  Quantum-dot heterostructure lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  G. Abstreiter,et al.  Carrier capture into InAs/GaAs quantum dots via multiple optical phonon emission , 2001 .

[27]  Sanjay Krishna,et al.  High-detectivity, normal-incidence, mid-infrared (λ∼4 μm)InAs/GaAs quantum-dot detector operating at 150 K , 2001 .

[28]  T. W. Berg,et al.  Theory of pulse-train amplification without patterning effects in quantum-dot semiconductor optical amplifiers , 2004, IEEE Journal of Quantum Electronics.

[29]  Benisty,et al.  Intrinsic mechanism for the poor luminescence properties of quantum-box systems. , 1991, Physical review. B, Condensed matter.

[30]  D. Bimberg,et al.  Injection lasers based on InGaAs quantum dots in an AlGaAs matrix , 1998 .

[31]  M. Hopkinson,et al.  Continuum transitions and phonon coupling in single self-assembled Stranski-Krastanow quantum dots , 2003 .

[32]  P. Hawrylak,et al.  Hidden symmetries in the energy levels of excitonic ‘artificial atoms’ , 2000, Nature.

[33]  Wolfgang Werner Langbein,et al.  Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots , 2002 .

[34]  D. Deppe,et al.  Low-threshold oxide-confined 1.3-μm quantum-dot laser , 2000, IEEE Photonics Technology Letters.

[35]  A. Forchel,et al.  Line narrowing in single semiconductor quantum dots: Toward the control of environment effects , 2002 .

[36]  A. Schliwa,et al.  Repulsive exciton-exciton interaction in quantum dots , 2003 .

[37]  G. Abstreiter,et al.  Wavelength selective charge storage in self-assembled InGaAs/GaAs quantum dots , 2003 .

[38]  M. S. Skolnick,et al.  Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.

[39]  P. G. Piva,et al.  Manipulating the energy levels of semiconductor quantum dots , 1999 .

[40]  G. Abstreiter,et al.  Electrical detection of optically induced charge storage in self-assembled InAs quantum dots , 1998 .

[41]  Rosa Weigand,et al.  Fine Structure of Biexciton Emission in Symmetric and Asymmetric CdSe/ZnSe Single Quantum Dots , 1999 .

[42]  M. S. Skolnick,et al.  Carrier dynamics in short wavelength self-assembled InAs/Al0.6Ga0.4As quantum dots with indirect barriers , 2003 .

[43]  G. Abstreiter,et al.  Optical spectroscopy of charged excitons in single quantum dot photodiodes , 2001 .

[44]  Inoshita,et al.  Electron relaxation in a quantum dot: Significance of multiphonon processes. , 1992, Physical review. B, Condensed matter.

[45]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[46]  Dieter Bimberg,et al.  Quantum size effect in self-organized InAs/GaAs quantum dots , 2000 .

[47]  M. S. Skolnick,et al.  Photoluminescence decay time measurements from self-organized InAs/GaAs quantum dots , 1999 .

[48]  A. Zrenner,et al.  Coherent properties of a two-level system based on a quantum-dot photodiode , 2002, Nature.

[49]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[50]  Andreas Stintz,et al.  High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector , 2002 .

[51]  M Paillard,et al.  Spin relaxation quenching in semiconductor quantum dots. , 2001, Physical review letters.

[52]  Kai Cheng,et al.  Ultra-broad-band AOTF based on cladding etched single-mode fiber , 2002 .

[53]  G. Bastard,et al.  Optically driven spin memory in n-doped InAs-GaAs quantum dots. , 2002, Physical review letters.

[54]  I. Gregory,et al.  Manipulation of the homogeneous linewidth of an individual In(Ga)As quantum dot , 2002 .

[55]  O. Schmidt,et al.  Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays. , 2003, Physical review letters.

[56]  Hawrylak,et al.  Excitonic absorption in a quantum Dot , 2000, Physical review letters.

[57]  Gang Chen,et al.  Biexciton quantum coherence in a single quantum dot. , 2002, Physical review letters.

[58]  Mikhail V. Maximov,et al.  Complete suppression of filamentation and superior beam quality in quantum-dot lasers , 2003 .

[59]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[60]  M. Hopkinson,et al.  Stacked low-growth-rate InAs quantum dots studied at the atomic level by cross-sectional scanning tunneling microscopy , 2003 .

[61]  Hiroshi Ishikawa,et al.  Quantum-Dot Semiconductor Optical Amplifiers for High Bit-Rate Signal Processing over 40 Gbit/s , 2001 .

[62]  F. Rossi,et al.  Quantum information processing with semiconductor macroatoms. , 2000, Physical review letters.

[63]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.

[64]  P. Bhattacharya,et al.  Raman coherence beats from entangled polarization eigenstates in InAs quantum dots. , 2002, Physical review letters.

[65]  Cedric Nishan Canagarajah,et al.  Indoor 2 GHz polarisation and spatial fading characteristics , 2002 .

[66]  Jean-Michel Gérard,et al.  Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities , 1999 .

[67]  M. S. Skolnick,et al.  Fine structure of charged and neutral excitons in InAs- Al 0.6 Ga 0.4 As quantum dots , 2002 .

[68]  Luke F. Lester,et al.  Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers , 2001 .

[69]  Mark Hopkinson,et al.  Stranski-Krastanow transition and epitaxial island growth , 2002 .

[70]  Nikolai N. Ledentsov,et al.  Multiphonon‐relaxation processes in self‐organized InAs/GaAs quantum dots , 1996 .

[71]  George W. Turner,et al.  Ultralow-threshold (50 A/cm2) strained single-quantum-well GaInAsSb/AlGaAsSb lasers emitting at 2.05 μm , 1998 .

[72]  E. Costard,et al.  Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity , 1998 .

[73]  A. Stintz,et al.  The influence of quantum-well composition on the performance of quantum dot lasers using InAs-InGaAs dots-in-a-well (DWELL) structures , 2000, IEEE Journal of Quantum Electronics.

[74]  B. Gerardot,et al.  Tuning of the electronic levels in vertically stacked InAs/GaAs quantum dots using crystal growth kinetics , 2003 .

[75]  M. S. Skolnick,et al.  Strong in-plane polarized intraband absorption in vertically aligned InGaAs/GaAs quantum dots , 2003 .

[76]  Albrecht,et al.  Rapid carrier relaxation in self-assembled InxGa1-xAs/GaAs quantum dots. , 1996, Physical review. B, Condensed matter.

[77]  J. A. Barker,et al.  Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots , 2000 .

[78]  Charles W. Tu,et al.  Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs , 2000 .

[79]  Vadim Tokranov,et al.  Enhanced thermal stability of laser diodes with shape-engineered quantum dot medium , 2003 .

[80]  Jasprit Singh,et al.  Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots , 2002 .

[81]  A. Holmes,et al.  Carrier relaxation and quantum decoherence of excited states in self-assembled quantum dots , 2001 .

[82]  A. Zunger,et al.  Compositional and size-dependent spectroscopic shifts in charged self-assembledInxGa1−xAs/GaAsquantum dots , 2003 .

[83]  K. Hinzer,et al.  Coupling and entangling of quantum states in quantum dot molecules. , 2001, Science.

[84]  G. Bastard,et al.  Phonon-assisted capture and intradot Auger relaxation in quantum dots , 1999 .

[85]  Costas Fotakis,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 2865 Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities , 2001 .

[86]  Egorov,et al.  Ultranarrow Luminescence Lines from Single Quantum Dots. , 1995, Physical review letters.

[87]  Skolnick,et al.  Electronic energy levels and energy relaxation mechanisms in self-organized InAs/GaAs quantum dots. , 1996, Physical review. B, Condensed matter.

[88]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[89]  M. S. Skolnick,et al.  Engineering carrier confinement potentials in 1.3-μm InAs/GaAs quantum dots with InAlAs layers: Enhancement of the high-temperature photoluminescence intensity , 2003 .

[90]  A. Holmes,et al.  Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. , 2002, Physical review letters.

[91]  J. Merz,et al.  Volmer–Weber and Stranski–Krastanov InAs-(Al,Ga)As quantum dots emitting at 1.3 μm , 2000 .

[92]  Joo-Heon Ahn,et al.  High temperature performance of self-organised quantum dot laser with stacked p-doped active region , 2002 .

[93]  G. Bastard,et al.  Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs. , 1994, Physical review letters.

[94]  A. Forchel,et al.  Importance of Auger recombination in InAs 1.3 /spl mu/m quantum dot lasers , 2003 .

[95]  M. S. Skolnick,et al.  Structural and optical studies of vertically aligned InAs/GaAs self-assembled quantum dots , 2001 .

[96]  Khaled Karrai,et al.  Hybridization of electronic states in quantum dots through photon emission , 2004, Nature.

[97]  Pm Paul Koenraad,et al.  Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy , 2002 .

[98]  Alexander V. Uskov,et al.  On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers , 2003 .

[99]  Todd H. Stievater,et al.  Measurement of optical absorption by a single quantum dot exciton , 2002 .

[100]  Y. Arakawa,et al.  EFFICIENT CARRIER RELAXATION MECHANISM IN INGAAS/GAAS SELF-ASSEMBLED QUANTUM DOTS BASED ON THE EXISTENCE OF CONTINUUM STATES , 1999 .

[101]  A. Vasanelli,et al.  Continuous absorption background and decoherence in quantum dots. , 2002, Physical review letters.

[102]  Andreas Hoffmann,et al.  Excited states and energy relaxation in stacked InAs/GaAs quantum dots , 1998 .

[103]  J. Baumberg,et al.  Coherent spectroscopy of optically gated charged single InGaAs quantum dots. , 2003, Physical review letters.

[104]  Gilberto Medeiros-Ribeiro,et al.  Charged Excitons in Self-Assembled Semiconductor Quantum Dots , 1997 .

[105]  Dieter Bimberg,et al.  450 meV hole localization in GaSb/GaAs quantum dots , 2003 .

[106]  Gammon,et al.  Coherent optical control of the quantum state of a single quantum Dot , 1998, Science.

[107]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[108]  Yoshihisa Yamamoto,et al.  Efficient source of single photons: a single quantum dot in a micropost microcavity. , 2002 .

[109]  Thomas F. Krauss,et al.  Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots , 2001 .

[110]  Shunichi Muto,et al.  On a Possibility of Wavelength-Domain-Multiplication Memory Using Quantum Boxes , 1995 .

[111]  M Rabe,et al.  Photon beats from a single semiconductor quantum dot. , 2001, Physical review letters.

[112]  Nikolai N. Ledentsov,et al.  InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain , 2003 .