Bayesian wavelet de-noising with the caravan prior

According to both domain expertise knowledge and empirical evidence, wavelet coefficients of real signals typically exhibit clustering patterns, in that they contain connected regions of coefficients of similar magnitude (large or small). A wavelet de-noising approach that takes into account such features of the signal may in practice outperform other, more vanilla methods, both in terms of the estimation error and visual appearance of the estimates. Motivated by this observation, we present a Bayesian approach to wavelet de-noising, where dependencies between neighbouring wavelet coefficients are a priori modelled via a Markov chain-based prior, that we term the caravan prior. Posterior computations in our method are performed via the Gibbs sampler. Using representative synthetic and real data examples, we conduct a detailed comparison of our approach with a benchmark empirical Bayes de-noising method (due to Johnstone and Silverman). We show that the caravan prior fares well and is therefore a useful addition to the wavelet de-noising toolbox.

[1]  Xavier Fernández-i-Marín,et al.  ggmcmc: Analysis of MCMC Samples and Bayesian Inference , 2016 .

[2]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[3]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[4]  P. Spreij,et al.  Nonparametric Bayesian Volatility Estimation , 2018, 2017 MATRIX Annals.

[5]  Juho Piironen,et al.  Uncertainty Quantification for the Horseshoe (with Discussion) comment , 2017 .

[6]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[7]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[8]  I. Johnstone,et al.  Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences , 2004, math/0410088.

[9]  Aad van der Vaart,et al.  Fundamentals of Nonparametric Bayesian Inference , 2017 .

[10]  S. Godsill,et al.  Bayesian variable selection and regularization for time–frequency surface estimation , 2004 .

[11]  A. Walden,et al.  Wavelet Methods for Time Series Analysis , 2000 .

[12]  Simon J. Godsill,et al.  Variational and stochastic inference for Bayesian source separation , 2007, Digit. Signal Process..

[13]  Ali Taylan Cemgil,et al.  Conjugate Gamma Markov Random Fields for Modelling Nonstationary Sources , 2007, ICA.

[14]  P. Spreij,et al.  Nonparametric Bayesian Volatility Learning Under Microstructure Noise , 2018, 1805.05606.

[15]  Mohamed-Jalal Fadili,et al.  Group sparsity with overlapping partition functions , 2011, 2011 19th European Signal Processing Conference.

[16]  Simon J. Godsill,et al.  Dicussion on the meeting on ‘Statistical approaches to inverse problems’ , 2004 .

[17]  José M. Bernardo,et al.  Bayesian Statistics , 2011, International Encyclopedia of Statistical Science.

[18]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[19]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[20]  Aad van der Vaart,et al.  Uncertainty Quantification for the Horseshoe (with Discussion) , 2016, 1607.01892.

[21]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[22]  Peter Spreij,et al.  Fast and scalable non-parametric Bayesian inference for Poisson point processes , 2018, 1804.03616.

[23]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[24]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevance Vector Machine , 2001 .

[25]  I. Johnstone,et al.  Empirical Bayes selection of wavelet thresholds , 2005, math/0508281.

[26]  Bernard W. Silverman,et al.  EbayesThresh: R Programs for Empirical Bayes Thresholding , 2005 .

[27]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[28]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[29]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[30]  Ali Taylan Cemgil,et al.  Gamma Markov Random Fields for Audio Source Modeling , 2009, IEEE Transactions on Audio, Speech, and Language Processing.

[31]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[32]  Van Der Vaart,et al.  The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors , 2014, 1404.0202.