Critical parameters in design of active magnetocaloric regenerators for magnetic refrigeration applications

Abstract A new way to evaluate the performance of the active magnetocaloric regenerator (AMR) was developed based on a few critical parameters proposed in this study. The critical parameters were derived from the energy equations that have been used to describe the transient energy transfer processes in the AMR for both the magnetocaloric materials and the heat transfer fluid. Each parameter is corresponding to a specific energy transfer mechanism in the AMR and can be easily implemented to evaluate the contribution from each term, including axial conduction and remnant energy storage in the magnetocaloric materials, axial conduction, remnant energy storage and fluid dissipation in the heat transfer fluid, and internally regenerated energy. Parametric studies were carried out to explore the impact of geometric and operating parameters and to determine whether or not a certain heat transfer mechanism is significant to the overall system performance.

[1]  Jader R. Barbosa,et al.  Performance evaluation of an active magnetic regenerator for cooling applications – part I: Experimental analysis and thermodynamic performance , 2016 .

[2]  G. V. Brown Magnetic heat pumping near room temperature , 1976 .

[3]  Zaizhong Xia,et al.  Study on the adsorption isosteres of the composite adsorbent CaCl2 and expanded graphite , 2011 .

[4]  Andrew Rowe,et al.  AMR thermodynamics: Semi-analytic modeling , 2014 .

[5]  Kaspar Kirstein Nielsen,et al.  Detailed numerical modeling of a linear parallel-plate Active Magnetic Regenerator , 2009 .

[6]  João P. Araújo,et al.  Maximizing the temperature span of a solid state active magnetic regenerative refrigerator , 2014 .

[7]  Jader R. Barbosa,et al.  Performance evaluation of an active magnetic regenerator for cooling applications – part II: Mathematical modeling and thermal losses , 2016 .

[8]  I. Takeuchi,et al.  Thermodynamics cycle analysis and numerical modeling of thermoelastic cooling systems , 2015 .

[9]  P. Egolf,et al.  A review of magnetic refrigerator and heat pump prototypes built before the year 2010 , 2010 .

[10]  S. A. Sherif,et al.  Design and performance of a novel magnetocaloric heat pump , 2016 .

[11]  Omar Abdelaziz,et al.  Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration , 2016 .

[12]  Yunho Hwang,et al.  Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance , 2016 .

[13]  C. Mahmed,et al.  A pre-industrial magnetic cooling system for room temperature application , 2012 .

[14]  S. Russek,et al.  The performance of a large-scale rotary magnetic refrigerator , 2014 .

[15]  Marko Ožbolt,et al.  Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives , 2014 .

[16]  A. Poredos,et al.  Dynamic operation of an active magnetic regenerator (AMR): Numerical optimization of a packed-bed AMR , 2011 .

[17]  A. Poredos,et al.  Magnetocaloric Energy Conversion , 2015 .

[18]  Bojia Li,et al.  Net heat gain assessment on a glazed transpired solar air collector with slit-like perforations , 2016 .

[19]  João P. Araújo,et al.  Optimization of the physical properties of magnetocaloric materials for solid state magnetic refrigeration , 2016 .

[20]  K. Gschneidner,et al.  MAGNETIC PHASE TRANSITIONS AND THE MAGNETOTHERMAL PROPERTIES OF GADOLINIUM , 1998 .

[21]  Kurt Engelbrecht,et al.  Development of a novel rotary magnetic refrigerator. , 2015 .

[22]  Andrew Rowe,et al.  Design improvements of a permanent magnet active magnetic refrigerator , 2014 .

[23]  Kaspar Kirstein Nielsen,et al.  Development and experimental results from a 1 kW prototype AMR , 2012 .

[24]  Andrej Kitanovski,et al.  Geometrical optimization of packed-bed and parallel-plate active magnetic regenerators , 2013 .

[25]  Andrew Rowe,et al.  Magnetic heat pumps: An overview of design principles and challenges , 2016 .

[26]  Andrew Rowe,et al.  Permanent magnet magnetic refrigerator design and experimental characterization. , 2011 .

[27]  Kaspar Kirstein Nielsen,et al.  The influence of non-magnetocaloric properties on the performance in parallel-plate AMRs , 2014 .

[28]  Ciro Aprea,et al.  The energy performances of a rotary permanent magnet magnetic refrigerator , 2016 .

[29]  V. Pecharsky,et al.  Thirty years of near room temperature magnetic cooling: Where we are today and future prospects , 2008 .

[30]  Ibrahim I. El-Sharkawy,et al.  A study on consolidated composite adsorbents for cooling application , 2016 .

[31]  David G. Beers,et al.  The impact of magnetocaloric properties on refrigeration performance and machine design , 2017 .

[32]  Ayyoub Mehdizadeh Momen,et al.  Experimental Study of the Maximum Resolution and Packing Density Achievable in Sintered and Non-Sintered Binder-Jet 3D Printed Steel Microchannels , 2015 .

[33]  Andrew Rowe,et al.  Thermodynamics of active magnetic regenerators: Part I , 2012 .

[34]  Kaspar Kirstein Nielsen,et al.  Experimental results for a novel rotary active magnetic regenerator , 2012 .

[35]  Alvaro T. Prata,et al.  Performance analysis of a rotary active magnetic refrigerator , 2013 .

[36]  Andrew Rowe,et al.  Impacts of configuration losses on active magnetic regenerator device performance , 2016 .

[37]  Jader R. Barbosa,et al.  Performance assessment of different porous matrix geometries for active magnetic regenerators , 2017 .

[38]  Ciro Aprea,et al.  A flexible numerical model to study an active magnetic refrigerator for near room temperature applications , 2010 .

[39]  Konstantin P. Skokov,et al.  Selective laser melting of La(Fe,Co,Si) 13 geometries for magnetic refrigeration , 2013 .

[40]  P. Trevizoli,et al.  Thermal–hydraulic evaluation of oscillating-flow regenerators using water: Experimental analysis of packed beds of spheres , 2016 .

[41]  Kaspar Kirstein Nielsen,et al.  Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators. , 2011 .

[42]  Jader R. Barbosa,et al.  Entropy Generation Minimization analysis of oscillating-flow regenerators , 2015 .

[43]  Nini Pryds,et al.  A regenerative elastocaloric heat pump , 2016, Nature Energy.

[44]  Kaspar Kirstein Nielsen,et al.  Design and experimental tests of a rotary active magnetic regenerator prototype , 2015 .