Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes

We study the refractive-index sensing properties of plasmonic nanotubes with a dielectric core and ultrathin metal shell. The few nanometer thin metal shell is described by both the usual Drude model and the nonlocal hydrodynamic model to investigate the effects of nonlocality. We derive an analytical expression for the extinction cross section and show how sensing of the refractive index of the surrounding medium and the figure of merit are affected by the shape and size of the nanotubes. Comparison with other localized surface plasmon resonance sensors reveals that the nanotube exhibits superior sensitivity and comparable figure of merit.

[1]  Basab B. Dasgupta,et al.  Polarizability of a small sphere including nonlocal effects , 1981 .

[2]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[3]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[4]  M. El-Sayed,et al.  Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors. , 2010, Journal of the American Chemical Society.

[5]  Martijn Wubs,et al.  Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. , 2011, Optics express.

[6]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[7]  W. Jones,et al.  Nonlocal Theory of the Optical Properties of Thin Metallic Films , 1969 .

[8]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[9]  Naomi J. Halas,et al.  Geometrical parameters controlling sensitivity of nanoshell plasmon resonances to changes in dielectric environment , 2004 .

[10]  A. Jauho,et al.  Unusual resonances in nanoplasmonic structures due to nonlocal response , 2011, 1106.2175.

[11]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[12]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[13]  A. Kristensen,et al.  Metamaterial localized resonance sensors: prospects and limitations. , 2010, Optics express.

[14]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[15]  Thomas A. Klar,et al.  Gold nanoshells improve single nanoparticle molecular sensors , 2004 .

[16]  R. S. Williams,et al.  A new route toward ultrasensitive, flexible chemical sensors: metal nanotubes by wet-chemical synthesis along sacrificial nanowire templates. , 2012, ACS nano.

[17]  R. Ruppin Extinction properties of thin metallic nanowires , 2001 .

[18]  A. Boardman,et al.  The optical surface modes of metal spheres , 1977 .

[19]  Jian Zhu,et al.  Effect of aspect ratio on the inter-surface plasmonic coupling of tubular gold nanoparticle , 2011 .

[20]  Fuchs,et al.  Multipolar response of small metallic spheres: Nonlocal theory. , 1987, Physical review. B, Condensed matter.

[21]  Mark L Brongersma,et al.  Nanoshells: gifts in a gold wrapper , 2003, Nature materials.

[22]  Antony Murphy,et al.  High-performance biosensing using arrays of plasmonic nanotubes. , 2010, ACS nano.

[23]  S. Xiao,et al.  Field enhancement at metallic interfaces due to quantum confinement , 2010, 1012.0714.

[24]  F. D. Abajo,et al.  Spatial Nonlocality in the Optical Response of Metal Nanoparticles , 2011 .

[25]  Naomi J Halas,et al.  Theranostic nanoshells: from probe design to imaging and treatment of cancer. , 2011, Accounts of chemical research.

[26]  Glenn P. Goodrich,et al.  Scattering Spectra of Single Gold Nanoshells , 2004 .

[27]  Alain Dereux,et al.  Surface plasmon polaritons on metal cylinders with dielectric core , 2001 .

[28]  R. Ruppin Optical properties of a plasma sphere , 1973 .