A characteristic-based nonconvex entropy-fix upwind scheme for the ideal magnetohydrodynamic equations
暂无分享,去创建一个
[1] Eitan Tadmor,et al. Non-oscillatory central schemes for one- and two-dimensional MHD equations. II: high-order semi-discrete schemes. , 2006 .
[2] S. Orszag,et al. Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.
[3] Guang-Shan Jiang,et al. A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .
[4] Paul R. Woodward,et al. A Simple Finite Difference Scheme for Multidimensional Magnetohydrodynamical Equations , 1998 .
[5] S. Osher,et al. Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .
[6] G. Tóth. The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .
[7] Phillip Colella,et al. A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..
[8] A. Jeffrey,et al. Nonlinear wave propagation , 1978 .
[9] C. Wu,et al. Formation, structure, and stability of MHD intermediate shocks , 1990 .
[10] M. Brio,et al. An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .
[11] I. M. Gel'fand,et al. Some problems in the theory of quasilinear equations , 1987 .
[12] Shengtai Li. An HLLC Riemann solver for magneto-hydrodynamics , 2005 .
[13] Philip L. Roe,et al. An upwind scheme for magnetohydrodynamics , 1995 .
[14] J. Michael Picone,et al. Evolution of the Orszag-Tang vortex system in a compressible medium , 1991 .
[15] Antonio Marquina,et al. Capturing Shock Reflections , 1996 .
[16] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[17] Susana Serna,et al. A Class of Extended Limiters Applied to Piecewise Hyperbolic Methods , 2006, SIAM J. Sci. Comput..
[18] J. M. Picone,et al. Evolution of the Orszag-Tang vortex system in a compressible medium. I: Initial average subsonic flow , 1989 .
[19] I. Bohachevsky,et al. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .
[20] C. Wu,et al. Magnetohydrodynamic Riemann problem and the structure of the magnetic reconnection layer , 1995 .
[21] Richard Courant,et al. Supersonic Flow And Shock Waves , 1948 .
[22] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[23] S. Osher,et al. Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .
[24] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[25] James P. Collins,et al. Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..
[26] J. Brackbill,et al. The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .
[27] Eitan Tadmor,et al. Nonoscillatory Central Schemes for One- and Two-Dimensional Magnetohydrodynamics Equations. II: High-Order SemiDiscrete Schemes , 2006, SIAM J. Sci. Comput..
[28] J. Hawley,et al. Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .
[29] P. Lax. Hyperbolic systems of conservation laws , 2006 .