d-Refinable (dual) pseudo-splines and their regularities

In this paper, we introduce the concept of d-dilation (dual) pseudo-splines in L2(ℝ) with dilation d ≥ 2, characterize the linear independence of the integer shifts, the subdivision schemes of polynomial reproduction and Holder regularity for (dual) pseudo-splines with general dilation. We present a new method to determine the Holder regularity of refinable functions with general dialtion d ≥ 2. Furthermore, we compare the regularities between pseudo-splines and dual ones.

[1]  Song Li,et al.  A new proof of some polynomial inequalities related to pseudo-splines , 2007 .

[2]  Maria Charina,et al.  Polynomial reproduction of multivariate scalar subdivision schemes , 2012, J. Comput. Appl. Math..

[3]  P. Lemarié–Rieusset On the Existence of Compactly Supported Dual Wavelets , 1997 .

[4]  N. Bi,et al.  Construction of Compactly SupportedM-Band Wavelets , 1999 .

[5]  Kai Hormann,et al.  Polynomial reproduction for univariate subdivision schemes of any arity , 2011, J. Approx. Theory.

[6]  Qiyu Sun Sobolev Exponent Estimate and Asymptotic Regularity of the M -Band Daubechies' Scaling Functions , 1999 .

[7]  Bin Han,et al.  Symmetric orthonormal scaling functions and wavelets with dilation factor 4 , 1998, Adv. Comput. Math..

[8]  Zuowei Shen,et al.  PSEUDO-SPLINES, WAVELETS AND FRAMELETS , 2007 .

[9]  Song Li,et al.  Wavelets and framelets from dual pseudo splines , 2010, 1007.4399.

[10]  Song Li,et al.  Shearlet frames with short support , 2011, 1101.4725.

[11]  I. Selesnick Smooth Wavelet Tight Frames with Zero Moments , 2001 .

[12]  Yuan Zhang,et al.  Conjugate Symmetric Complex Tight Wavelet Frames with Two Generators , 2013 .

[13]  Bin Dong,et al.  Linear independence of pseudo-splines , 2006 .

[14]  Bin Dong,et al.  Construction of Biorthogonal Wavelets from Pseudo-splines , 2022 .

[15]  Bin Han,et al.  Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..

[16]  Nira Dyn,et al.  Properties of dual pseudo-splines , 2010 .

[17]  Y. Shouzhi,et al.  A CLASS OF COMPACTLY SUPPORTED ORTHOGONAL SYMMETRIC COMPLEX WAVELETS WITH DILATION FACTOR 3 , 2012 .

[18]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[19]  Song Li,et al.  Complex Wavelets and Framelets from Pseudo Splines , 2010 .

[20]  Bin Han,et al.  Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules , 2010, Adv. Comput. Math..

[21]  Nira Dyn,et al.  Polynomial reproduction by symmetric subdivision schemes , 2008, J. Approx. Theory.