A DEEP CHANDRA X-RAY LIMIT ON THE PUTATIVE IMBH IN OMEGA CENTAURI

We report a sensitive X-ray search for the proposed intermediate-mass black hole (IMBH) in the massive Galactic cluster, ω Centauri (NGC 5139). Combining Chandra X-ray Observatory data from Cycles 1 and 13, we obtain a deep (∼291 ks) exposure of the central regions of the cluster. We find no evidence for an X-ray point source near any of the cluster's proposed dynamical centers, and place an upper limit on the X-ray flux from a central source of fX(0.5–7.0 keV) ⩽5.0 × 10−16 erg cm−2 s−1, after correcting for absorption. This corresponds to an unabsorbed X-ray luminosity of LX(0.5–7.0 keV) ⩽1.6 × 1030 erg s−1, for a cluster distance of 5.2 kpc, Galactic column density NH = 1.2 × 1021 cm−2, and power-law spectrum with Γ = 2.3. If a ∼104 IMBH resides in the cluster's core, as suggested by some stellar dynamical studies, its Eddington luminosity would be LEdd ∼1042 erg s−1. The new X-ray limit would then establish an Eddington ratio of LX/LEdd ≲ 10−12, a factor of ∼10 lower than even the quiescent state of our Galaxy's notoriously inefficient supermassive black hole Sgr A*, and imply accretion efficiencies as low as η ≲ 10−6–10−8. This study leaves open three possibilities: either ω Cen does not harbor an IMBH or, if an IMBH does exist, it must experience very little or very inefficient accretion.

[1]  R. Starling,et al.  Calibration of X-ray absorption in our Galaxy , 2013, 1303.0843.

[2]  Jay Anderson,et al.  HST/ACS IMAGING OF OMEGA CENTAURI: OPTICAL COUNTERPARTS OF CHANDRA X-RAY SOURCES , 2012, 1212.2646.

[3]  L. Ho,et al.  X-RAY PROPERTIES OF INTERMEDIATE-MASS BLACK HOLES IN ACTIVE GALAXIES. III. SPECTRAL ENERGY DISTRIBUTION AND POSSIBLE EVIDENCE FOR INTRINSICALLY X-RAY-WEAK ACTIVE GALACTIC NUCLEI , 2012, 1210.6653.

[4]  H. Falcke,et al.  CHANDRA/HETGS OBSERVATIONS OF THE BRIGHTEST FLARE SEEN FROM Sgr A* , 2012, 1209.6354.

[5]  M. Volonteri The Formation and Evolution of Massive Black Holes , 2012, Science.

[6]  L. Ho,et al.  THE ABSENCE OF RADIO EMISSION FROM THE GLOBULAR CLUSTER G1 , 2012, 1206.5729.

[7]  L. Chomiuk,et al.  NO EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS: STRONG CONSTRAINTS FROM THE JVLA , 2012, 1203.6352.

[8]  L. Ho,et al.  THE CANDIDATE INTERMEDIATE-MASS BLACK HOLE IN THE GLOBULAR CLUSTER M54 , 2011, 1107.4583.

[9]  K. Gebhardt,et al.  Kinematic signature of an intermediate-mass black hole in the globular cluster NGC 6388 , 2011, 1107.4243.

[10]  A. Kong,et al.  RADIO CONTINUUM OBSERVATIONS OF 47 TUCANAE AND ω CENTAURI: HINTS FOR INTERMEDIATE-MASS BLACK HOLES? , 2011, 1102.1668.

[11]  P. T. de Zeeuw,et al.  VERY LARGE TELESCOPE KINEMATICS FOR OMEGA CENTAURI: FURTHER SUPPORT FOR A CENTRAL BLACK HOLE , 2010, 1007.4559.

[12]  A. Tzioumis,et al.  Radio observations of NGC 6388: an upper limit on the mass of its central black hole , 2010, 1003.4604.

[13]  Roeland P. van der Marel,et al.  NEW LIMITS ON AN INTERMEDIATE-MASS BLACK HOLE IN OMEGA CENTAURI. I. HUBBLE SPACE TELESCOPE PHOTOMETRY AND PROPER MOTIONS , 2009, 0905.0627.

[14]  Jay Anderson,et al.  NEW LIMITS ON AN INTERMEDIATE-MASS BLACK HOLE IN OMEGA CENTAURI. II. DYNAMICAL MODELS , 2009, 0905.0638.

[15]  R. Ibata,et al.  DENSITY AND KINEMATIC CUSPS IN M54 AT THE HEART OF THE SAGITTARIUS DWARF GALAXY: EVIDENCE FOR A 104 M☉ BLACK HOLE? , 2009, 0906.4894.

[16]  M. Davies,et al.  A CHANDRA STUDY OF THE GALACTIC GLOBULAR CLUSTER OMEGA CENTAURI , 2009, 0902.2397.

[17]  C. E. Thornton,et al.  The Host Galaxy and Central Engine of the Dwarf Active Galactic Nucleus POX 52 , 2008, 0807.1535.

[18]  T. Maccarone,et al.  Radio observations of NGC 2808 and other globular clusters: constraints on intermediate-mass black holes , 2008, 0806.2387.

[19]  Karl Gebhardt,et al.  Gemini and Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in ω Centauri , 2008 .

[20]  Ramesh Narayan,et al.  Advection-Dominated Accretion and the Black Hole Event Horizon , 2008, 0803.0322.

[21]  L. Ho,et al.  The Mass Function of Active Black Holes in the Local Universe , 2007, 0705.0020.

[22]  Luis C. Ho,et al.  Radio Emission from the Intermediate-Mass Black Hole in the Globular Cluster G1 , 2007, 0704.1458.

[23]  Karl Gebhardt,et al.  Evidence for an Intermediate Mass Black Hole in Omega Centauri , 2006, 0801.2782.

[24]  Michael A. Nowak,et al.  CIAO: Chandra's data analysis system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[25]  S. Pellegrini,et al.  Nuclear Accretion in Galaxies of the Local Universe: Clues from Chandra Observations , 2005, astro-ph/0502035.

[26]  P. Hut,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[27]  H. Falcke,et al.  A scheme to unify low-power accreting black holes Jet-dominated accretion flows and the radio/X-ray correlation , 2003, astro-ph/0305335.

[28]  Thomas J. Maccarone,et al.  Do X-ray binary spectral state transition luminosities vary? , 2003, astro-ph/0308036.

[29]  T. D. Matteo,et al.  A Fundamental plane of black hole activity , 2003, astro-ph/0305261.

[30]  Ramesh Narayan,et al.  Nonthermal Electrons in Radiatively Inefficient Accretion Flow Models of Sagittarius A* , 2003, astro-ph/0304125.

[31]  Luis C. Ho,et al.  Detection of the “Active” Nucleus of M32 , 2003, astro-ph/0303060.

[32]  L. Ho,et al.  A Stringent Limit on the Accretion Luminosity of the Possible Central Black Hole in the Globular Cluster M15 , 2003, astro-ph/0303061.

[33]  J. Makino,et al.  On the Central Structure of M15 , 2002, astro-ph/0210133.

[34]  L. Hernquist,et al.  Dynamics of a Massive Black Hole at the Center of a Dense Stellar System , 2001, astro-ph/0107287.

[35]  F. V. Leeuwen,et al.  Omega Centauri, A Unique Window into Astrophysics , 2002 .

[36]  D. Lamb,et al.  A Wavelet-Based Algorithm for the Spatial Analysis of Poisson Data , 2001, astro-ph/0108429.

[37]  Columbia,et al.  Detection of Ionized Gas in the Globular Cluster 47 Tucanae , 2001, astro-ph/0107206.

[38]  UCLA,et al.  Chandra X-Ray Spectroscopic Imaging of Sagittarius A* and the Central Parsec of the Galaxy , 2001, astro-ph/0102151.

[39]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[40]  S. Rappaport,et al.  Bondi-Hoyle-Lyttleton Accretion Model for Low-Luminosity X-Ray Sources in Globular Clusters , 2000, astro-ph/0009212.

[41]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[42]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[43]  K. Freeman,et al.  The Giant Branch of omega Centauri. V. The Calcium Abundance Distribution , 1996 .

[44]  M. S. Oey,et al.  Atlas of quasar energy distributions , 1994 .

[45]  G. Illingworth,et al.  Mass-to-light ratios and the mass function in globular clusters. , 1976 .

[46]  J. Ostriker,et al.  Massive black holes in globular clusters? , 1975, Nature.

[47]  H. Bondi,et al.  On spherically symmetrical accretion , 1952 .