Data pattern tomography: reconstruction with an unknown apparatus

We propose a scheme for the reconstruction of the quantum state without a priori knowledge about the measurement setup. Using the data pattern approach, we develop an iterative procedure for obtaining information about the measurement which is sufficient for an estimation of a particular signal state. The method is illustrated with the examples of reconstruction with on/off detection and quantum homodyne tomography.

[1]  Stefano Olivares,et al.  Photon statistics without counting photons , 2004, quant-ph/0405139.

[2]  O. Haderka,et al.  Experimental multi-photon-resolving detector using a single avalanche photodiode , 2003, quant-ph/0302154.

[3]  E. Huntington,et al.  Photostatistics reconstruction via loop detector signatures. , 2009, Optics express.

[4]  E. Sudarshan Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams , 1963 .

[5]  Peter D. Drummond,et al.  Gaussian quantum operator representation for bosons , 2003, quant-ph/0308064.

[6]  Giacomo Mauro D'Ariano,et al.  Quantum calibration of measurement instrumentation. , 2004, Physical review letters.

[7]  D. Klyshko,et al.  Use of two-photon light for absolute calibration of photoelectric detectors , 1980 .

[8]  Jens Eisert,et al.  Tomography of quantum detectors , 2009 .

[9]  John R. Klauder,et al.  Improved Version of Optical Equivalence Theorem , 1966 .

[10]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[11]  M. Mohseni,et al.  Direct characterization of quantum dynamics: General theory , 2006, quant-ph/0601034.

[12]  D. Mogilevtsev Calibration of single-photon detectors using quantum statistics , 2010 .

[13]  Z Hradil,et al.  Biased tomography schemes: an objective approach. , 2006, Physical review letters.

[14]  Dmitri Mogilevtsev,et al.  Diagonal element inference by direct detection , 1998 .

[15]  Alan L Migdall,et al.  High accuracy verification of a correlated-photon- based method for determining photoncounting detection efficiency. , 2007, Optics express.

[16]  Zdenek Hradil,et al.  Tomography for quantum diagnostics , 2008 .

[17]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.

[18]  Christian Tomás Schmiegelow,et al.  Selective and efficient quantum process tomography with single photons. , 2010, Physical review letters.

[19]  J. Paz,et al.  Selective and efficient quantum process tomography without ancilla. , 2011, Physical review letters.

[20]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[21]  M. Mohseni,et al.  Direct characterization of quantum dynamics. , 2006, Physical review letters.

[22]  G. Brida,et al.  Twin-photon techniques for photo-detector calibration , 2005, quant-ph/0505227.

[23]  Zdenek Hradil,et al.  Objective approach to biased tomography schemes , 2007 .

[24]  Z Hradil,et al.  Operational tomography: fitting of data patterns. , 2010, Physical review letters.

[25]  J. Rehacek,et al.  Multiple-photon resolving fiber-loop detector , 2003 .

[26]  B. Sanders,et al.  Quantum process tomography with coherent states , 2010, 1009.3307.

[27]  Matteo G. A. Paris,et al.  A two-step MaxLik-MaxEnt strategy to infer photon distribution from on/off measurement at low quantum efficiency , 2005 .

[28]  Raymond Kapral,et al.  Quantum dynamics in open quantum-classical systems , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  J. Řeháček,et al.  Effective method to estimate multidimensional Gaussian states , 2009, 0902.0823.

[30]  Marco Genovese,et al.  Experimental reconstruction of photon statistics without photon counting. , 2005, Physical review letters.

[31]  Barry C Sanders,et al.  Complete Characterization of Quantum-Optical Processes , 2008, Science.

[32]  C. Herrero,et al.  Path-integral simulation of solids , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.