Force in scf theories

[1]  H. Nakatsuji ELECTRON-CLOUD FOLLOWING AND PRECEDING AND THE SHAPES OF MOLECULES , 2002 .

[2]  Bernard R. Brooks,et al.  Analytic gradients from correlated wave functions via the two‐particle density matrix and the unitary group approach , 1980 .

[3]  J. Pople,et al.  Derivative studies in configuration–interaction theory , 1980 .

[4]  P. Pulay An efficient ab initio gradient program , 1979 .

[5]  Henry F. Schaefer,et al.  Gradient techniques for open‐shell restricted Hartree–Fock and multiconfiguration self‐consistent‐field methods , 1979 .

[6]  Keiji Morokuma,et al.  Energy gradient in a multi-configurational SCF formalism and its application to geometry optimization of trimethylene diradicals , 1979 .

[7]  K. Fukui,et al.  Exact formula for the gradient of the CI potential energy hypersurface , 1978 .

[8]  H. Nakatsuji,et al.  ELECTROSTATIC FORCE THEORY FOR A MOLECULE AND INTERACTING MOLECULES. 7. AB INITIO VERIFICATION OF THE FORCE CONCEPTS BASED ON THE FLOTATING WAVE FUNCTIONS OF AMMONIA, METHYL(1+) ION, AND AMMONIA(1+) ION , 1978 .

[9]  Warren J. Hehre,et al.  Computation of electron repulsion integrals involving contracted Gaussian basis functions , 1978 .

[10]  H. Nakatsuji,et al.  Electrostatic force study with floating wavefunction. Shape of the H2O molecule , 1978 .

[11]  Kazuhiro Ishida,et al.  Efficient determination and characterization of transition states using ab-initio methods , 1977 .

[12]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[13]  H. Nakatsuji,et al.  Electrostatic force treatment based on extended hueckel molecular orbitals. Structure and reaction of simple hydrocarbons , 1973 .

[14]  H. Nakatsuji Electrostatic force theory for a molecule and interacting molecules. III. Overlap effect on the atomic dipole and exchange forces, orbital following and preceding, and the shapes of XmABYn molecules , 1973 .

[15]  J. Gerratt,et al.  Force Constants and Dipole‐Moment Derivatives of Molecules from Perturbed Hartree–Fock Calculations. II. Applications to Limited Basis‐Set SCF–MO Wavefunctions , 1968 .

[16]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[17]  R. Bader,et al.  A view of bond formation in terms of molecular charge distributions , 1968 .

[18]  G. G. Hall The stability of a wavefunction under a perturbation , 1961 .

[19]  Clemens C. J. Roothaan,et al.  New Developments in Molecular Orbital Theory , 1951 .

[20]  H. Nakatsuji,et al.  Force and density study of the chemical reaction process OH2+H+→OH3 + , 1980 .

[21]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[22]  H. Nakatsuji Common nature of the electron cloud of a system undergoing change in nuclear configuration , 1974 .

[23]  Hiroshi Nakatsuji,et al.  Electrostatic force theory for a molecule and interacting molecules. I. Concept and illustrative applications , 1973 .

[24]  H. Nakatsuji Electrostatic force theory for a molecule and interacting molecules. II. Shapes of the ground- and excited-state molecules , 1973 .

[25]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .