Adaptive subtraction using complex-valued curvelet transforms
暂无分享,去创建一个
[1] D. J. Verschuur,et al. Multiple Removal results from Delft University. , 1999 .
[2] Emmanuel J. Candès,et al. What is...a Curvelet , 2003 .
[3] D. J. Verschuur,et al. Removal of internal multiples with the common-focus-point (CFP) approach: Part 1 — Explanation of the theory , 2005 .
[4] Rayan Saab,et al. Bayesian wavefield separation by transform-domain sparsity promotion , 2008 .
[5] Minh N. Do,et al. Multidimensional Directional Filter Banks and Surfacelets , 2007, IEEE Transactions on Image Processing.
[6] D. J. Verschuur,et al. Removal of internal multiples with the common-focus-point (CFP) approach: Part 2 — Application strategies and data examples , 2005 .
[7] Felix J. Herrmann,et al. Curvelet-domain multiple elimination with sparseness constraints , 2004 .
[8] D. J. Verschuur,et al. Imaging of multiple reflections , 2006 .
[9] D. J. Verschuur,et al. Minimum Energy Adaptive Subtraction In Surface-related Multiple Attenuation , 1998 .
[10] Anatoly Baumstein,et al. 3D surface-related multiple elimination : Data reconstruction and application to field data , 2006 .
[11] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[12] D. J. Verschuur,et al. Adaptive curvelet-domain primary-multiple separation , 2008 .
[13] D. J. Verschuur,et al. Estimation of multiple scattering by iterative inversion; Part II, Practical aspects and examples , 1997 .
[14] Lexing Ying,et al. 3D discrete curvelet transform , 2005, SPIE Optics + Photonics.
[15] Laurent Demanet,et al. Curvelets and wave atoms for mirror-extended images , 2007, SPIE Optical Engineering + Applications.