DNA and RNA analyses in detection of genetic predisposition to cancer

[1]  Colin C Pritchard,et al.  ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing. , 2012, The Journal of molecular diagnostics : JMD.

[2]  T. Dallman,et al.  Performance comparison of benchtop high-throughput sequencing platforms , 2012, Nature Biotechnology.

[3]  Jeffrey G. Reifenberger,et al.  Single-step capture and sequencing of natural DNA for detection of BRCA1 mutations. , 2012, Genome research.

[4]  Rochelle L. Garcia,et al.  Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing , 2011, Proceedings of the National Academy of Sciences.

[5]  T. Glenn Field guide to next‐generation DNA sequencers , 2011, Molecular ecology resources.

[6]  J. Kładny,et al.  Combined iPLEX and TaqMan assays to screen for 45 common mutations in Lynch syndrome and FAP patients , 2011, The Journal of molecular diagnostics : JMD.

[7]  T. Walsh,et al.  Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing , 2010, Proceedings of the National Academy of Sciences.

[8]  C. Ayuso,et al.  Comparison of high-resolution melting analysis with denaturing high-performance liquid chromatography for mutation scanning in the ABCA4 gene. , 2010, Investigative ophthalmology & visual science.

[9]  A. Gialeraki,et al.  Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity , 2010, Molecular Biology Reports.

[10]  C. Chow,et al.  Rapid detection of SMARCB1 sequence variation using high resolution melting , 2009, BMC Cancer.

[11]  Inmaculada de Juan Jiménez,et al.  Advantages of the high resolution melting in the detection of BRCA1 or BRCA2 mutation carriers. , 2009, Clinical biochemistry.

[12]  Jan Traeger-Synodinos,et al.  Multianalyte, dipstick-type, nanoparticle-based DNA biosensor for visual genotyping of single-nucleotide polymorphisms. , 2009, Biosensors & bioelectronics.

[13]  Carl T Wittwer,et al.  High‐resolution DNA melting analysis: advancements and limitations , 2009, Human mutation.

[14]  I. Bièche,et al.  Quantitative PCR high‐resolution melting (qPCR‐HRM) curve analysis, a new approach to simultaneously screen point mutations and large rearrangements: application to MLH1 germline mutations in Lynch syndrome , 2009, Human mutation.

[15]  Catherine Voegele,et al.  Determining the effectiveness of High Resolution Melting analysis for SNP genotyping and mutation scanning at the TP53 locus , 2009, BMC Genetics.

[16]  Liuda Ziaugra,et al.  SNP Genotyping Using the Sequenom MassARRAY iPLEX Platform , 2009, Current protocols in human genetics.

[17]  J. Jiricny,et al.  Multiplex SNaPshot genotyping for detecting loss of heterozygosity in the mismatch-repair genes MLH1 and MSH2 in microsatellite-unstable tumors. , 2008, Clinical chemistry.

[18]  Karl V Voelkerding,et al.  High resolution melting applications for clinical laboratory medicine. , 2008, Experimental and molecular pathology.

[19]  N. Morling,et al.  Multiplex PCR detection of GSTM1, GSTT1, and GSTP1 gene variants: simultaneously detecting GSTM1 and GSTT1 gene copy number and the allelic status of the GSTP1 Ile105Val genetic variant. , 2007, The Journal of molecular diagnostics : JMD.

[20]  Nicholas J Turro,et al.  3′-O-modified nucleotides as reversible terminators for pyrosequencing , 2007, Proceedings of the National Academy of Sciences.

[21]  Á. Carracedo,et al.  Multiplex SNaPshot for detection of BRCA1/2 common mutations in Spanish and Spanish related breast/ovarian cancer families , 2007, BMC Medical Genetics.

[22]  J. Kładny,et al.  Germline MSH2 and MLH1 mutational spectrum including large rearrangements in HNPCC families from Poland (update study) , 2005, Clinical genetics.

[23]  A. Jakubowska,et al.  A high proportion of founder BRCA1 mutations in Polish breast cancer families , 2004, International journal of cancer.

[24]  L. Kalaydjieva,et al.  A standard protocol for single nucleotide primer extension in the human genome using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. , 2003, Rapid communications in mass spectrometry : RCM.

[25]  S. Chong,et al.  Multiplex minisequencing screen for common Southeast Asian and Indian beta-thalassemia mutations. , 2003, Clinical chemistry.

[26]  J. Kładny,et al.  Germline MSH2 and MLH1 mutational spectrum in HNPCC families from Poland and the Baltic States , 2002, Journal of medical genetics.

[27]  A. Jakubowska,et al.  Germline mutations in the von Hippel-Lindau (VHL) gene in patients from Poland: disease presentation in patients with deletions of the entire VHL gene , 2002, Journal of medical genetics.

[28]  D. Zwijnenburg,et al.  Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. , 2002, Nucleic acids research.

[29]  R. Scott,et al.  Mutation analysis of MLH1 and MSH2 genes performed by denaturing high-performance liquid chromatography. , 2002, Journal of biochemical and biophysical methods.

[30]  A. Jakubowska,et al.  Founder mutations in the BRCA1 gene in Polish families with breast-ovarian cancer. , 2000, American journal of human genetics.

[31]  E. Lukhtanov,et al.  3'-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. , 2000, Nucleic acids research.

[32]  Y. Matsubara,et al.  A fluorogenic allele‐specific amplification method for DNA‐based screening for inherited metabolic disorders , 1999, Acta paediatrica (Oslo, Norway : 1992). Supplement.

[33]  E. Gross,et al.  A highly sensitive, fast, and economical technique for mutation analysis in hereditary breast and ovarian cancers , 1999, Human mutation.

[34]  V. Stigliano,et al.  Lynch Syndrome: Molecular Mechanism and Current Clinical Practice , 2018, Constitutional Oncogenetics.

[35]  M. O’Donovan,et al.  Optimal temperature selection for mutation detection by denaturing HPLC and comparison to single-stranded conformation polymorphism and heteroduplex analysis. , 1999, Clinical chemistry.

[36]  E. Gross,et al.  A comparison of BRCA1 mutation analysis by direct sequencing, SSCP and DHPLC , 1999, Human Genetics.

[37]  M. O’Donovan,et al.  Blind analysis of denaturing high-performance liquid chromatography as a tool for mutation detection. , 1998, Genomics.

[38]  S N Thibodeau,et al.  Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations. , 1998, Nucleic acids research.

[39]  M. Ronaghi,et al.  Real-time DNA sequencing using detection of pyrophosphate release. , 1996, Analytical biochemistry.

[40]  K. Livak,et al.  Real time quantitative PCR. , 1996, Genome research.

[41]  T. Smyrk,et al.  Hereditary nonpolyposis colorectal cancer (Lynch syndrome): An updated review , 1996, Cancer.

[42]  G. Casey,et al.  Are we any closer to genetic testing for common malignancies? , 1996, Nature Medicine.

[43]  Sajeev P. Cherian,et al.  In vitro transcription/translation assay for the screening of hMLH1 and hMSH2 mutations in familial colon cancer. , 1995, Gastroenterology.

[44]  Y. Lau,et al.  A PCR artifact: generation of heteroduplexes. , 1989, American journal of human genetics.

[45]  T. Sekiya,et al.  Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Smyrk,et al.  Hereditary nonpolyposis colorectal cancer--Lynch syndromes I and II. , 1988, Gastroenterology clinics of North America.

[47]  R. D. Campbell,et al.  Reactivity of cytosine and thymine in single-base-pair mismatches with hydroxylamine and osmium tetroxide and its application to the study of mutations. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[48]  P. Chomczyński,et al.  Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. , 1987, Analytical biochemistry.

[49]  Yuchen Jiao,et al.  ATM mutations in patients with hereditary pancreatic cancer. , 2012, Cancer discovery.

[50]  R. Słomski,et al.  APC gene mutations causing familial adenomatous polyposis in Polish patients , 2010, Journal of Applied Genetics.

[51]  T. K. Christopoulos,et al.  Dual-allele dipstick assay for genotyping single nucleotide polymorphisms by primer extension reaction , 2009, European Journal of Human Genetics.

[52]  F. Monzon Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing , 2009 .

[53]  F. Révillion,et al.  Multiplex single-nucleotide primer extension analysis to simultaneously detect eleven BRCA1 mutations in breast cancer families. , 2004, Clinical chemistry.

[54]  Ronald W Davis,et al.  A multi-enzyme model for Pyrosequencing. , 2004, Nucleic acids research.

[55]  A. Jakubowska,et al.  Molecular basis of inherited predispositions for tumors. , 2002, Acta biochimica Polonica.

[56]  R. Haugland Handbook of fluorescent probes and research products , 2002 .

[57]  Thomas D. Schmittgen,et al.  Real-Time Quantitative PCR , 2002 .

[58]  A D Carothers,et al.  Cancer risk associated with germline DNA mismatch repair gene mutations. , 1997, Human molecular genetics.

[59]  B. Zbar,et al.  Renal cysts, renal cancer and von Hippel-Lindau disease. , 1997, Kidney international.

[60]  L. Benítez-Bribiesca,et al.  [Hereditary nonpolyposis colorectal cancer. Lynch syndrome]. , 1995, Revista de gastroenterologia de Mexico.

[61]  L. Strong,et al.  The retinoblastoma gene and its significance. , 1994, Annals of medicine.

[62]  D. Charnock-Jones,et al.  New protocols for DNA sequencing with dye terminators. , 1992, DNA sequence : the journal of DNA sequencing and mapping.

[63]  H T Lynch,et al.  Hereditary breast cancer. , 1991, Annals of medicine.

[64]  R. Myers,et al.  Detection and localization of single base changes by denaturing gradient gel electrophoresis. , 1987, Methods in enzymology.