Réseaux Probabilistes Orientés Objet

La representation de connaissances incertaines est un probleme important dans le domaine de l’intelligence artificielle. Les reseaux probabilistes proposent une solution interessante pour de nombreuses raisons theoriques et pratiques mais ont le desavantage d’etre difficiles a creer autant qu’a maintenir. Dans cet article, nous definissons un cadre de specification orientee objet qui permet de construire un modele en manipulant des sous-reseaux independants. Ce cadre offre egalement un systeme d’heritage efficace et un moyen de representation compacte des reseaux probabilistes dynamiques.

[1]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[2]  Michael P. Wellman,et al.  Planning and Control , 1991 .

[3]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[4]  Denyse Baillargeon,et al.  Bibliographie , 1929 .

[5]  Wray L. Buntine,et al.  Graphical models for discovering knowledge , 1996, KDD 1996.

[6]  Avi Pfeffer,et al.  Object-Oriented Bayesian Networks , 1997, UAI.

[7]  Dan Geiger,et al.  Identifying independence in bayesian networks , 1990, Networks.

[8]  David Poole,et al.  MULTIPLY SECTIONED BAYESIAN NETWORKS AND JUNCTION FORESTS FOR LARGE KNOWLEDGE‐BASED SYSTEMS , 1993, Comput. Intell..

[9]  Uffe Kjærulff,et al.  A Computational Scheme for Reasoning in Dynamic Probabilistic Networks , 1992, UAI.

[10]  Yang Xiang Optimization of Inter-Subnet Belief Updating in Multiply Sectioned Bayesian Networks , 1995, UAI.

[11]  Eric Horvitz,et al.  Uncertain reasoning and forecasting , 1995 .

[12]  Gregory M. Provan,et al.  Knowledge Engineering for Large Belief Networks , 1994, UAI.

[13]  Finn Verner Jensen,et al.  Introduction to Bayesian Networks , 2008, Innovations in Bayesian Networks.

[14]  S. Andreassen,et al.  Diagnostic function of the microhuman prototype of the expert system--MUNIN. , 1992, Electroencephalography and clinical neurophysiology.

[15]  Ross D. Shachter,et al.  Structural Controllability and Observability in Influence Diagrams , 1992, UAI.

[16]  Uffe Kjærulff,et al.  Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence , 1992 .

[17]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[18]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[19]  Finn Verner Jensen,et al.  Inference in Multiply Sectioned Bayesian Networks with Extended Shafer-Shenoy and Lazy Propagation , 1999, UAI.

[20]  David Heckerman,et al.  Decision-Theoretic Troubleshooting: A Framework for Repair and Experiment , 1996, UAI.

[21]  Kathryn B. Laskey,et al.  Network Fragments: Representing Knowledge for Constructing Probabilistic Models , 1997, UAI.

[22]  David Heckerman,et al.  Bayesian Networks for Knowledge Discovery , 1996, Advances in Knowledge Discovery and Data Mining.

[23]  Kathryn B. Laskey,et al.  Network fragments , 1999 .

[24]  Sampath Srinivas,et al.  A Probabilistic Approach to Hierarchical Model-based Diagnosis , 1994, UAI.