Sidelobe Canceling for Reconfigurable Holographic Metamaterial Antenna

Accurate and efficient methods for beam-steering of holographic metamaterial antennas is of critical importance for enabling consumer usage of satellite data capacities. We develop an algorithm capable of optimizing the beam pattern of the holographic antenna through software, reconfigurable controls. Our method provides an effective technique for antenna pattern optimization for a holographic antenna, which significantly suppresses sidelobes. The efficacy of the algorithm is demonstrated both on a computational model of the antenna and experimentally. Due to their exceptional portability, low-power consumption, and lack of moving parts, holographic antennas are an attractive and viable technology when combined with proven software-based strategies to optimize performance.

[1]  V. Russo,et al.  Holographic Antennas , 1968 .

[2]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[3]  G. Rassweiler,et al.  Adaptive sidelobe nulling using digitally controlled phase-shifters , 1976 .

[4]  L. J. Griffiths,et al.  An alternative approach to linearly constrained adaptive beamforming , 1982 .

[5]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[6]  Nordholm,et al.  Performance limits of the broadband generalized sidelobe cancelling structure in an isotropic noise field , 2000, The Journal of the Acoustical Society of America.

[7]  Walter Kellermann,et al.  Efficient frequency-domain realization of robust generalized, sidelobe cancellers , 2001, 2001 IEEE Fourth Workshop on Multimedia Signal Processing (Cat. No.01TH8564).

[8]  D. Sievenpiper,et al.  A tunable impedance surface performing as a reconfigurable beam steering reflector , 2002 .

[9]  Walter Kellermann,et al.  A CALIBRATION ALGORITHM FOR ROBUST GENERALIZED SIDELOBE CANCELLING BEAMFORMERS , 2005 .

[10]  T. Itoh,et al.  Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth , 2004, IEEE Transactions on Microwave Theory and Techniques.

[11]  Jennifer T. Bernhard Reconfigurable Antennas , 2007, Reconfigurable Antennas.

[12]  F. Costa,et al.  An Active High-Impedance Surface for Low-Profile Tunable and Steerable Antennas , 2008, IEEE Antennas and Wireless Propagation Letters.

[13]  R. Hansen Phased Array Antennas , 2009 .

[14]  Ladislau Matekovits,et al.  TUNABLE PERIODIC MICROSTRIP STRUCTURE ON GAAS WAFER , 2009 .

[15]  D. Sievenpiper,et al.  Scalar and Tensor Holographic Artificial Impedance Surfaces , 2010, IEEE Transactions on Antennas and Propagation.

[16]  Ladislau Matekovits,et al.  Metamaterial-Based Millimeter-Wave Switchable Leaky Wave Antennas for On-Chip Implementation in Gaas Technology , 2011 .

[17]  F. Caminita,et al.  Spiral Leaky-Wave Antennas Based on Modulated Surface Impedance , 2011, IEEE Transactions on Antennas and Propagation.

[18]  G. Minatti,et al.  A Circularly-Polarized Isoflux Antenna Based on Anisotropic Metasurface , 2012, IEEE Transactions on Antennas and Propagation.

[19]  Katie M. Palmer Metamaterials make for a broadband breakthrough , 2012 .

[20]  David R. Smith,et al.  Metamaterial apertures for coherent computational imaging on the physical layer. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  Symon K. Podilchak,et al.  Controlled Leaky-Wave Radiation From a Planar Configuration of Width-Modulated Microstrip Lines , 2013, IEEE Transactions on Antennas and Propagation.

[22]  Patrick Bowen,et al.  Discrete-dipole approximation model for control and optimization of a holographic metamaterial antenna. , 2014, Applied optics.

[23]  J. S. Colburn,et al.  A low profile electronically-steerable artificial-impedance-surface antenna , 2014, 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA).