Embedding Population Dynamics Models in Inference

Increasing pressures on the environment are generating an ever-increasing need to manage animal and plant populations sustainably, and to protect and rebuild endangered populations. Effective management requires reliable mathematical models, so that the effects of management action can be predicted, and the uncertainty in these predictions quantified. These models must be able to predict the response of populations to anthropogenic change, while handling the major sources of uncertainty. We describe a simple ``building block'' approach to formulating discrete-time models. We show how to estimate the parameters of such models from time series of data, and how to quantify uncertainty in those estimates and in numbers of individuals of different types in populations, using computer-intensive Bayesian methods. We also discuss advantages and pitfalls of the approach, and give an example using the British grey seal population.

[1]  R King,et al.  Model Selection for Integrated Recovery/Recapture Data , 2002, Biometrics.

[2]  Jennifer A Hoeting,et al.  Autoregressive Models for Capture‐Recapture Data: A Bayesian Approach , 2003, Biometrics.

[3]  Michael Lavine,et al.  Statistical modeling of seedling mortality , 2002 .

[4]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[5]  C. Walters,et al.  Quantitative fisheries stock assessment: Choice, dynamics and uncertainty , 2004, Reviews in Fish Biology and Fisheries.

[6]  Patrick J. Sullivan,et al.  A Kalman filter approach to catch-at-length analysis , 1992 .

[7]  Jon T. Schnute,et al.  A General Framework for Developing Sequential Fisheries Models , 1994 .

[8]  James S. Clark,et al.  POPULATION TIME SERIES: PROCESS VARIABILITY, OBSERVATION ERRORS, MISSING VALUES, LAGS, AND HIDDEN STATES , 2004 .

[9]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[10]  J. Dupuis Bayesian estimation of movement and survival probabilities from capture-recapture data , 1995 .

[11]  André E. Punt,et al.  A Bayesian Approach to Stock Assessment and Harvest Decisions Using the Sampling/Importance Resampling Algorithm , 1994 .

[12]  Adrian E. Raftery,et al.  Inference from a Deterministic Population Dynamics Model for Bowhead Whales , 1995 .

[13]  Subhash R Lele,et al.  Sampling variability and estimates of density dependence: a composite-likelihood approach. , 2006, Ecology.

[14]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[15]  L. Mark Berliner,et al.  Hierarchical Bayesian Time Series Models , 1996 .

[16]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[17]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[18]  J. Andrew Royle,et al.  Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions , 2007, Biometrics.

[19]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[20]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[21]  Christopher K. Wikle,et al.  Hierarchical Bayesian Models for Predicting The Spread of Ecological Processes , 2003 .

[22]  James N. Ianelli,et al.  Bayesian stock assessment using catch-age data and the sampling - importance resampling algorithm , 1997 .

[23]  Michael A. West Mixture Models, Monte Carlo, Bayesian Updating and Dynamic Models , 1992 .

[24]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[25]  Michael A. Fedak,et al.  Movements, diving and foraging behaviour of grey seals (Halichoerus grypus) , 1991 .

[26]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[27]  Russell B. Millar,et al.  Bayesian stock assessment using a state-space implementation of the delay difference model , 1999 .

[28]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[29]  Kevin Stokes,et al.  Coping with uncertainty in ecological advice: lessons from fisheries , 2003 .

[30]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[31]  Carl J. Walters,et al.  Adaptive Management of Renewable Resources , 1986 .

[32]  Byron J. T. Morgan,et al.  THE POTENTIAL OF INTEGRATED POPULATION MODELLING † , 2005 .

[33]  P Besbeas,et al.  Integrating Mark–Recapture–Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters , 2002, Biometrics.

[34]  Peter Müller,et al.  INCORPORATING MULTIPLE SOURCES OF STOCHASTICITY INTO DYNAMIC POPULATION MODELS , 2003 .

[35]  Byron J. T. Morgan,et al.  Detecting parameter redundancy , 1997 .

[36]  L. M. Berliner,et al.  Hierarchical Bayesian space-time models , 1998, Environmental and Ecological Statistics.

[37]  S. T. Buckland,et al.  Hidden process models for animal population dynamics. , 2006, Ecological applications : a publication of the Ecological Society of America.

[38]  Ken B. Newman,et al.  STATE-SPACE MODELING OF ANIMAL MOVEMENT AND MORTALITY WITH APPLICATION TO SALMON , 1998 .

[39]  Byron J. T. Morgan,et al.  Estimation in parameter-redundant models , 1998 .

[40]  S. T. Buckland,et al.  Monitoring change in biodiversity through composite indices , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[41]  S. T. Bucklanda,et al.  State-space models for the dynamics of wild animal populations , 2003 .

[42]  Shripad Tuljapurkar,et al.  Stochastic Matrix Models , 1997 .

[43]  P. H. Leslie On the use of matrices in certain population mathematics. , 1945, Biometrika.

[44]  Jeremy S. Collie,et al.  Estimating Population Size from Relative Abundance Data Measured with Error , 1983 .

[45]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[46]  C. Walters,et al.  Quantitative Fisheries Stock Assessment , 1992, Springer US.

[47]  Walter R. Gilks,et al.  Strategies for improving MCMC , 1995 .

[48]  Andrew Harvey,et al.  Forecasting, Structural Time Series Models and the Kalman Filter. , 1991 .

[49]  Russell B. Millar,et al.  Non‐linear state space modelling of fisheries biomass dynamics by using Metropolis‐Hastings within‐Gibbs sampling , 2000 .

[50]  H. Caswell Matrix population models : construction, analysis, and interpretation , 2001 .

[51]  Abstr Am SOME PROBLEMS IN ESTIMATING POPULATION SIZES FROM CATCH-ATAGE DATA , 1988 .

[52]  Éric Parent,et al.  A Bayesian state-space modelling framework for fitting a salmon stage-structured population dynamic model to multiple time series of field data , 2004 .

[53]  Carryn L Cunningham,et al.  A Bayesian state-space model for mixed-stock migrations, with application to Northeast Atlantic mackerel Scomber scombrus , 2007 .

[54]  Terrance J. Quinn,et al.  Quantitative Fish Dynamics , 1999 .

[55]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[56]  Byron J. T. Morgan,et al.  The efficient integration of abundance and demographic data , 2003 .

[57]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[58]  James S. Clark,et al.  HIERARCHICAL BAYES FOR STRUCTURED, VARIABLE POPULATIONS: FROM RECAPTURE DATA TO LIFE‐HISTORY PREDICTION , 2005 .

[59]  G. Gudmundsson,et al.  Time series analysis of catch-at-age observations , 1994 .

[60]  M. West Approximating posterior distributions by mixtures , 1993 .

[61]  Ken B. Newman,et al.  Hierarchic modeling of salmon harvest and migration , 2000 .

[62]  Jean-Dominique Lebreton,et al.  Dynamique de la population camarguaise de Mouettes rieuses Larus ridibundus L. : un modèle mathématique , 1976 .

[63]  Stephen T. Buckland,et al.  Fitting Population Dynamics Models to Count and Cull Data Using Sequential Importance Sampling , 2000 .

[64]  Bernie J. McConnell,et al.  Movements and foraging areas of grey seals in the North Sea , 1999 .

[65]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[66]  Murdoch K. McAllister,et al.  A Bayesian estimation and decision analysis for an age-structured model using biomass survey data , 1994 .

[67]  L. Lefkovitch The study of population growth in organisms grouped by stages , 1965 .

[68]  Ruth King,et al.  Bayesian model discrimination for multiple strata capture‐recapture data , 2002 .

[69]  R. H. Myers Classical and modern regression with applications , 1986 .

[70]  Stephen T. Buckland,et al.  A UNIFIED FRAMEWORK FOR MODELLING WILDLIFE POPULATION DYNAMICS † , 2005 .

[71]  Len Thomas,et al.  Monte carlo inference for state-space models of wild animal populations. , 2009, Biometrics.

[72]  A. Raftery,et al.  Inference for Deterministic Simulation Models: The Bayesian Melding Approach , 2000 .

[73]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .