Interdiffusion and Reaction Between Al and Zr in the Temperature Range of 425 to 475 °C

[1]  Le Zhou,et al.  Phase Transformations and Microstructural Development in the U-10 Wt Pct Mo Alloy with Varying Zr Contents After Heat Treatments Relevant to the Monolithic Fuel Plate Fabrication Process , 2018, Metallurgical and Materials Transactions A.

[2]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[3]  Le Zhou,et al.  Microstructural Characterization of AA6061 Versus AA6061 HIP Bonded Cladding–Cladding Interface , 2018 .

[4]  Xingke Zhao,et al.  Nanoscale structures of the interfacial reaction layers between molten aluminium and solid steel based on thermophysical simulations , 2018 .

[5]  Y. Sohn,et al.  Interdiffusion, Reactions, and Phase Transformations Observed during Fabrication of Low Enriched Uranium Monolithic Fuel System for Research and Test Reactors , 2018 .

[6]  Carlos A. S. Oliveira,et al.  Precipitation hardening in dilute Al–Zr alloys , 2017 .

[7]  Y. Sohn,et al.  Relating Diffusion Couple Experiment Results to Observed As-Fabricated Microstructures in Low-Enriched U-10wt.% Mo Monolithic Fuel Plates , 2017 .

[8]  Y. Sohn,et al.  Mechanical properties examined by nanoindentation for selected phases relevant to the development of monolithic uranium-molybdenum metallic fuels , 2017 .

[9]  Weiguo Li,et al.  The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al-Cu-Zr alloys: HRTEM observations and first-principles calculations☆ , 2016 .

[10]  M. Medraj,et al.  On the atomic interdiffusion in Mg–{Ce, Nd, Zn} and Zn–{Ce, Nd} binary systems , 2014 .

[11]  Le Zhou,et al.  Interdiffusion and reaction between Zr and Al alloys from 425° to 625 °C , 2014 .

[12]  Youngmo Kim,et al.  Investigation of anisotropic diffusion behavior of Zn in hcp Mg and interdiffusion coefficients of intermediate phases in the Mg–Zn system , 2013 .

[13]  A. Paul,et al.  Growth mechanism of phases by interdiffusion and atomic mechanism of diffusion in the molybdenum–silicon system , 2011 .

[14]  W. Cheng,et al.  Study of microstructure and phase evolution of hot-dipped aluminide mild steel during high-temperature diffusion using electron backscatter diffraction , 2011 .

[15]  D. Seidman,et al.  Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging , 2010 .

[16]  W. Cheng,et al.  Growth of intermetallic layer in the aluminide mild steel during hot-dipping , 2009 .

[17]  Derek K. Jones Gaussian Modeling of the Diffusion Signal , 2009 .

[18]  B. Billia,et al.  Anomalous growth of Ni3Si2 in bulk Ni/Si interdiffusion , 2008 .

[19]  D. Seidman,et al.  Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600 °C , 2008 .

[20]  D. Seidman,et al.  Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375-425 °C , 2008 .

[21]  H. Mehrer Diffusion in solids : fundamentals, methods, materials, diffusion-controlled processes , 2007 .

[22]  B. Billia,et al.  Reactive interdiffusion in the binary system Ni-Si: Morphology of the Ni3Si2 phase , 2006 .

[23]  M. Asta,et al.  First-principles calculation of structural energetics of Al-TM (TM = Ti, Zr, Hf) intermetallics , 2005 .

[24]  K. Bhanumurthy,et al.  Intermetallics in the Zr–Al diffusion zone , 2004 .

[25]  A. Bouayad,et al.  Kinetic interactions between solid iron and molten aluminium , 2003 .

[26]  D. Keiser,et al.  High-density, low-enriched uranium fuel for nuclear research reactors , 2003 .

[27]  M. Dayananda,et al.  Growth of silicides and interdiffusion in the Mo-Si system , 1999 .

[28]  F. Barbier,et al.  Intermetallic compound layer growth between solid iron and molten aluminium , 1998 .

[29]  M. Dayananda,et al.  Diffusion structures in Mo vs. Si solid-solid diffusion couples , 1998 .

[30]  E. Palmiere,et al.  Understanding microstructure: Key to advances in materials , 1997 .

[31]  J. Ågren,et al.  Three types of planar boundaries in multiphase diffusion couples , 1996 .

[32]  J. Gülpen,et al.  Growth of Silicides in Ni-Si and Ni-SiC Bulk Diffusion Couples , 1995 .

[33]  J. H. Gülpen Reactive phase formation in the Ni-Si system , 1995 .

[34]  A. Kodentsov,et al.  The Growth of Silicides in Ni-Si and Ni-SiC Diffusion Couples , 1994 .

[35]  M. Dayananda Average Effective Interdiffusion Coefficients in Binary and Multicomponent Alloys , 1993 .

[36]  W. C. Johnson On the inapplicability of gibbs phase rule to coherent solids , 1987 .

[37]  C. B. Alcock,et al.  Vapour Pressure Equations for the Metallic Elements: 298–2500K , 1984 .

[38]  G. Ottaviani,et al.  Intermetallic compound formation in thin-film and in bulk samples of the Ni-Si binary system , 1983 .

[39]  Y. Natanzon,et al.  The effect of dissolution on the growth of the Fe2Al5 interlayer in the solid iron -liquid aluminium system , 1981 .

[40]  M. Dayananda,et al.  Zero-flux planes and flux reversals in Cu−Ni−Zn diffusion couples , 1979 .

[41]  C. Wagner,et al.  THE EVALUATION OF DATA OBTAINED WITH DIFFUSION COUPLES OF BINARY SINGLE- PHASE AND MULTIPHASE SYSTEMS. , 1969 .

[42]  P. V. Pantulu,et al.  Generalized symmetry and Neumann’s principle , 1967 .

[43]  G. D. Miller,et al.  A STUDY OF THE INTERDIFFUSION OF ALUMINUM AND ZIRCONIUM , 1964 .

[44]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .