Balanced pairs in partial orders

An α-balanced pair in a partially ordered set P = (X, <) is a pair (x, y) of elements of X such that the proportion of linear extensions of P with x below y lies between α and 1 − α. The 1/3–2/3 Conjecture states that, in every finite partial order P, not a chain, there is a 1/3-balanced pair. This was first conjectured in a 1968 paper of Kislitsyn, and remains unsolved. We survey progress towards a resolution of the conjecture, and discuss some of the many related problems.

[1]  Martin E. Dyer,et al.  Faster random generation of linear extensions , 1999, SODA '98.

[2]  Jeff Kahn,et al.  Entropy and sorting , 1992, STOC '92.

[3]  Peter C. Fishburn Proportional transitivity in linear extensions of ordered sets , 1986, J. Comb. Theory, Ser. B.

[4]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[5]  B. S. Mityagin Two inequalities for volumes of convex bodies , 1969 .

[6]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[7]  Graham R. Brightwell,et al.  Linear extensions of random orders , 1994, Discret. Math..

[8]  Nathan Linial,et al.  Balancing extensions via Brunn-Minkowski , 1991, Comb..

[9]  Wojciech A. Trybulec Partially Ordered Sets , 1990 .

[10]  Nathan Linial,et al.  The Information-Theoretic Bound is Good for Merging , 1984, SIAM J. Comput..

[11]  János Komlós A strange pigeon-hole principle , 1990 .

[12]  M. Dyer Computing the volume of convex bodies : a case where randomness provably helps , 1991 .

[13]  Graham Brightwell Semiorders and the 1/3–2/3 conjecture , 1989 .

[14]  Joel Friedman A Note on Poset Geometries , 1993, SIAM J. Comput..

[15]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[16]  G. Brightwell,et al.  Counting linear extensions , 1991 .

[17]  L. Khachiyan,et al.  On the conductance of order Markov chains , 1991 .

[18]  Michael L. Fredman,et al.  How Good is the Information Theory Bound in Sorting? , 1976, Theor. Comput. Sci..

[19]  Graham R. Brightwell Linear extensions of infinite posets , 1988, Discret. Math..

[20]  J. Kahn,et al.  Balancing poset extensions , 1984 .

[21]  B. Grünbaum Partitions of mass-distributions and of convex bodies by hyperplanes. , 1960 .

[22]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[23]  W. Trotter,et al.  Balancing Pairs in Partially Ordered Sets , 1993 .

[24]  Mike D. Atkinson,et al.  Computing the Number of Mergings with Constraints , 1987, Inf. Process. Lett..

[25]  Graham Brightwell,et al.  The 1/3-2/3 Conjecture for 5-Thin Posets , 1992, SIAM J. Discret. Math..

[26]  Alan G. Konheim A Note on Merging , 1972, SIAM J. Comput..

[27]  Stefan Felsner,et al.  Balancing pairs and the cross product conjecture , 1995 .

[28]  Peter C. Fishburn,et al.  Balance theorems for height-2 posets , 1992 .