High Purity GaAs Nanowires Free of Planar Defects: Growth and Characterization

We investigate how to tailor the structural, crystallographic and optical properties of GaAs nanowires. Nanowires were grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. A high arsine flow rate, that is, a high ratio of group V to group I I I precursors, imparts significant advantages. It dramatically reduces planar crystallographic defects and reduces intrinsic carbon dopant incorporation. Increasing V/III ratio further, however, instigates nanowire kinking and increases nanowire tapering. By choosing an intermediate V/III ratio we achieve uniform, vertically aligned GaAs nanowires, free of planar crystallographic defects, with excellent optical properties and high purity. These findings will greatly assist the development of future GaAs nanowire-based electronic and optoelectronic devices, and are expected to be more broadly relevant to the rational synthesis of other III-V nanowires.

[1]  Nanowire growth and dopants studied by cross-sectional scanning tunnelling microscopy , 2006 .

[2]  H. M. Manasevit,et al.  High purity GaAs prepared from trimethylgallium and arsine , 1981 .

[3]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[4]  D. G. Thomas,et al.  Kinetics of Radiative Recombination at Randomly Distributed Donors and Acceptors , 1965 .

[5]  Samuel Chen,et al.  Surface reconstruction limited mechanism of molecular‐beam epitaxial growth of AlGaAs on (111)B face , 1991 .

[6]  S. Kodambaka,et al.  Germanium Nanowire Growth Below the Eutectic Temperature , 2007, Science.

[7]  Connie J. Chang-Hasnain,et al.  Critical diameter for III-V nanowires grown on lattice-mismatched substrates , 2007 .

[8]  G. Stillman,et al.  Residual donors and acceptors in high-purity GaAs and InP grown by hydride VPE , 1983 .

[9]  L. Samuelson,et al.  Infrared photodetectors in heterostructure nanowires. , 2006, Nano letters.

[10]  M. Borgström,et al.  Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study , 2004 .

[11]  Reuter,et al.  Surfactants in epitaxial growth. , 1989, Physical review letters.

[12]  E. I. Givargizov Periodic instability in whisker growth , 1973 .

[13]  M. Meyyappan,et al.  Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor , 2004 .

[14]  Zhong Lin Wang,et al.  Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth. , 2006, Nano letters.

[15]  A. DiGiovanni,et al.  Frequency Shift with Temperature as Evidence for Donor-Acceptor Pair Recombination in Relatively Puren-Type GaAs , 1967 .

[16]  T. Fukui,et al.  Mechanism of catalyst-free growth of GaAs nanowires by selective area MOVPE , 2007 .

[17]  T. Fukui,et al.  Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy , 2007 .

[18]  Jiangtao Hu,et al.  Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes , 1999 .

[19]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[20]  T. Katsuyama,et al.  GaAs free‐standing quantum‐size wires , 1993 .

[21]  Takashi Fukui,et al.  Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy , 2005 .

[22]  H. Jackson,et al.  Dynamics of strongly degenerate electron-hole plasmas and excitons in single InP nanowires. , 2007, Nano letters.

[23]  R. Stanley Williams,et al.  Ultrahigh-density silicon nanobridges formed between two vertical silicon surfaces , 2004 .

[24]  Xiangfeng Duan,et al.  Synthesis and optical properties of gallium arsenide nanowires , 2000 .

[25]  N. Schumaker,et al.  Characterization of GaAs films grown by metalorganic chemical vapor deposition , 1985 .

[26]  Lars Samuelson,et al.  Position-controlled interconnected InAs nanowire networks. , 2006, Nano letters.

[27]  K. Dick,et al.  A New Understanding of Au‐Assisted Growth of III–V Semiconductor Nanowires , 2005 .

[28]  H. Tan,et al.  Growth mechanism of truncated triangular III-V nanowires. , 2007, Small.

[29]  Lars Samuelson,et al.  Synthesis of branched 'nanotrees' by controlled seeding of multiple branching events , 2004, Nature materials.

[30]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[31]  Shadi A Dayeh,et al.  III-V nanowire growth mechanism: V/III ratio and temperature effects. , 2007, Nano letters.

[32]  Z. Lu,et al.  Determination of donor and acceptor densities in high‐purity GaAs from photoluminescence analysis , 1990 .

[33]  L. Samuelson,et al.  Structural properties of 〈111〉B -oriented III–V nanowires , 2006, Nature materials.

[34]  H. Jackson,et al.  Resonant excitation and imaging of nonequilibrium exciton spins in single core-shell GaAs-AlGaAs nanowires. , 2007, Nano letters (Print).

[35]  Lyubov V. Titova,et al.  Temperature dependence of photoluminescence from single core-shell GaAs–AlGaAs nanowires , 2006 .

[36]  D. J. Ashen,et al.  The incorporation and characterisation of acceptors in epitaxial GaAs , 1975 .

[37]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[38]  S. V. Voitikov,et al.  Quantum defect approach for the effect of electron–phonon coupling on impurity recombination in semiconductors , 1999 .

[39]  Kunihiko Tanaka,et al.  Donor‐acceptor pair recombination luminescence from Cu2ZnSnS4 bulk single crystals , 2006 .

[40]  C. Chang-Hasnain,et al.  Optical properties of InP nanowires on Si substrates with varied synthesis parameters , 2008 .

[41]  Lars Samuelson,et al.  Nanowire single-electron memory. , 2005, Nano letters.

[42]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[43]  T. Kuech,et al.  Mechanism of carbon incorporation in MOCVD GaAs , 1984 .

[44]  E. H. Bogardus,et al.  Bound-Exciton, Free-Exciton, Band-Acceptor, Donor-Acceptor, and Auger Recombination in GaAs , 1968 .

[45]  E. Bakkers,et al.  Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.

[46]  Charles M. Lieber,et al.  Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors , 2004 .

[47]  Northrup,et al.  Reconstructions of GaAs(1-bar 1-bar 1-bar) surfaces observed by scanning tunneling microscopy. , 1990, Physical review letters.

[48]  Chennupati Jagadish,et al.  Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. , 2007, Nano letters.

[49]  G. Harris,et al.  Systematic study of effects of growth conditions on the (nano-, meso-, micro)size and (one-, two-, three-dimensional) shape of GaN single crystals grown by a direct reaction of Ga with ammonia , 2003 .

[50]  G. Stillman,et al.  Excited-state-donor--to--acceptor transitions in the photoluminescence spectrum of GaAs and InP , 1984 .

[51]  S. Hark,et al.  Size‐Dependent Periodically Twinned ZnSe Nanowires , 2004 .

[52]  H. Mori,et al.  Influence of H2 Overpressure on the Properties of GaAs Grown by Low-Pressure MOCVD , 1984 .

[53]  Chennupati Jagadish,et al.  Nearly intrinsic exciton lifetimes in single twin-free GaAs/AlGaAs core-shell nanowire heterostructures , 2008 .

[54]  S. Ghandhi,et al.  Deposition of GaAs Epitaxial Layers by Organometallic CVD Temperature and Orientation Dependence , 1983 .

[55]  D. Hurle A mechanism for twin formation during Czochralski and encapsulated vertical Bridgman growth of III V compound semiconductors , 1995 .

[56]  Chennupati Jagadish,et al.  Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. , 2006, Nano letters.