Automated Analysis of Underground Marketplaces

Cyber criminals congregate and operate in crowded online underground marketplaces. Because forensic investigators lack efficient and reliable tools, they are forced to analyze the marketplace channels manually to locate criminals – a complex, time-consuming and expensive task. This paper demonstrates how machine learning algorithms can be used to automatically determine if a communication channel is used as an underground marketplace. Experimental results demonstrate that the classification system, which uses features related to the cyber crime domain, correctly classifies 51.3 million messages. The automation can significantly reduce the manual effort and the costs involved in investigating online underground marketplaces.

[1]  G. Paquet Underground Economy , 2020, Encyclopedia of the UN Sustainable Development Goals.

[2]  Robert M. Losee Term dependence: A basis for Luhn and Zipf models , 2001, J. Assoc. Inf. Sci. Technol..

[3]  Chris Buckley,et al.  Pivoted Document Length Normalization , 1996, SIGIR Forum.

[4]  Céline Rouveirol,et al.  Machine Learning: ECML-98 , 1998, Lecture Notes in Computer Science.

[5]  Felix C. Freiling,et al.  Learning More about the Underground Economy: A Case-Study of Keyloggers and Dropzones , 2009, ESORICS.

[6]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[7]  James Mayfield,et al.  Character N-Gram Tokenization for European Language Text Retrieval , 2004, Information Retrieval.

[8]  James O. Coplien,et al.  Pattern languages of program design , 1995 .

[9]  Jaziar Radianti Using a Mixed Data Collection Strategy to Uncover Vulnerability Black Markets , 2007 .

[10]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[11]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[12]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[13]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[14]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[15]  Team Cymru,et al.  The Underground Economy: Priceless , 2006, login Usenix Mag..

[16]  Stefan Savage,et al.  An inquiry into the nature and causes of the wealth of internet miscreants , 2007, CCS '07.

[17]  Ian Witten,et al.  Data Mining , 2000 .

[18]  Chengyu Song,et al.  Studying Malicious Websites and the Underground Economy on the Chinese Web , 2008, WEIS.

[19]  Christian Platzer,et al.  Covertly Probing Underground Economy Marketplaces , 2010, DIMVA.

[20]  Andrew McCallum,et al.  Distributional clustering of words for text classification , 1998, SIGIR '98.

[21]  Cormac Herley,et al.  Nobody Sells Gold for the Price of Silver: Dishonesty, Uncertainty and the Underground Economy , 2009, WEIS.