Distributionally robust multi-item newsvendor problems with multimodal demand distributions

We present a risk-averse multi-dimensional newsvendor model for a class of products whose demands are strongly correlated and subject to fashion trends that are not fully understood at the time when orders are placed. The demand distribution is known to be multimodal in the sense that there are spatially separated clusters of probability mass but otherwise lacks a complete description. We assume that the newsvendor hedges against distributional ambiguity by minimizing the worst-case risk of the order portfolio over all distributions that are compatible with the given modality information. We demonstrate that the resulting distributionally robust optimization problem is $$\mathrm{NP}$$NP-hard but admits an efficient numerical solution in quadratic decision rules. This approximation is conservative and computationally tractable. Moreover, it achieves a high level of accuracy in numerical tests. We further demonstrate that disregarding ambiguity or multimodality can lead to unstable solutions that perform poorly in stress test experiments.

[1]  Javier Peña,et al.  A Conic Programming Approach to Generalized Tchebycheff Inequalities , 2005, Math. Oper. Res..

[2]  G. M. Tallis Elliptical and Radial Truncation in Normal Populations , 1963 .

[3]  Daureen Steinberg COMPUTATION OF MATRIX NORMS WITH APPLICATIONS TO ROBUST OPTIMIZATION , 2007 .

[4]  Stephen P. Boyd,et al.  Generalized Chebyshev Bounds via Semidefinite Programming , 2007, SIAM Rev..

[5]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[6]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[7]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[8]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[9]  K. Isii The extrema of probability determined by generalized moments (I) bounded random variables , 1960 .

[10]  Z. Q. Lu Statistical Inference Based on Divergence Measures , 2007 .

[11]  J. Dupacová The minimax approach to stochastic programming and an illustrative application , 1987 .

[12]  Leandro Pardo Llorente Statistical inference based on divergence measures , 2005 .

[13]  G. Ryzin,et al.  Retail inventories and consumer choice , 1999 .

[14]  Erick Delage,et al.  Distributionally robust optimization in context of data-driven problems , 2009 .

[15]  Yao Zhao,et al.  A Multiproduct Risk-Averse Newsvendor with Law-Invariant Coherent Measures of Risk , 2011, Oper. Res..

[16]  Masao Fukushima,et al.  Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management , 2009, Oper. Res..

[17]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[18]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[19]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[20]  Pablo A. Parrilo,et al.  A Hierarchy of Near-Optimal Policies for Multistage Adaptive Optimization , 2011, IEEE Transactions on Automatic Control.

[21]  Alexander Shapiro,et al.  Minimax analysis of stochastic problems , 2002, Optim. Methods Softw..

[22]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[23]  M. Fisher,et al.  Assortment Planning: Review of Literature and Industry Practice , 2008 .

[24]  Dimitris Bertsimas,et al.  Tractable stochastic analysis in high dimensions via robust optimization , 2012, Mathematical Programming.

[25]  Xuan Vinh Doan,et al.  Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..

[26]  Wlodzimierz Ogryczak,et al.  Dual Stochastic Dominance and Related Mean-Risk Models , 2002, SIAM J. Optim..

[27]  Melvyn Sim,et al.  TRACTABLE ROBUST EXPECTED UTILITY AND RISK MODELS FOR PORTFOLIO OPTIMIZATION , 2009 .

[28]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[29]  S. Wallace,et al.  Product variety arising from hedging in the fashion supply chains , 2008 .

[30]  Jitka Dupacová,et al.  Robustness in stochastic programs with risk constraints , 2012, Ann. Oper. Res..

[31]  Peter W. Glynn,et al.  Likelihood robust optimization for data-driven problems , 2013, Computational Management Science.

[32]  Jitka Dupačová,et al.  Stress Testing via Contamination , 2004, Coping with Uncertainty.

[33]  Yinyu Ye,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[34]  Marshall L. Fisher,et al.  Demand Estimation and Assortment Optimization Under Substitution: Methodology and Application , 2007, Oper. Res..

[35]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[36]  Ioana Popescu,et al.  A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions , 2005, Math. Oper. Res..

[37]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[38]  Georgia Perakis,et al.  Regret in the Newsvendor Model with Partial Information , 2008, Oper. Res..

[39]  Roberto Verganti,et al.  Measuring the impact of asymmetric demand distributions on inventories , 1999 .

[40]  Arthur F. Veinott,et al.  Analysis of Inventory Systems , 1963 .

[41]  Alexander Shapiro,et al.  On a Class of Minimax Stochastic Programs , 2004, SIAM J. Optim..

[42]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[43]  Peng Sun,et al.  Computation of Minimum Volume Covering Ellipsoids , 2002, Oper. Res..

[44]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[45]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[46]  G. Gallego,et al.  The Distribution Free Newsboy Problem: Review and Extensions , 1993 .