Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries.

A layered iron vanadate Fe5V15O39(OH)9·9H2O nanosheet is first introduced to an aqueous zinc battery system as a cathode material, which delivers a high capacity of 385 mA h g-1 at 0.1 A g-1 and remarkable cycling performance at high current density (over 80% capacity retention after 300 cycles at 5 A g-1).

[1]  L. Mai,et al.  Graphene Scroll-Coated α-MnO2 Nanowires as High-Performance Cathode Materials for Aqueous Zn-Ion Battery. , 2018, Small.

[2]  Jun Chen,et al.  Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities , 2017, Nature Communications.

[3]  L. Mai,et al.  Layered VS2 Nanosheet‐Based Aqueous Zn Ion Battery Cathode , 2017 .

[4]  Liqiang Mai,et al.  Track batteries degrading in real time , 2017, Nature.

[5]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[6]  Joseph Paul Baboo,et al.  Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode , 2017 .

[7]  Daniel C. Hannah,et al.  Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. , 2017, Chemical reviews.

[8]  Albert L. Lipson,et al.  A High Power Rechargeable Nonaqueous Multivalent Zn/V2O5 Battery , 2016 .

[9]  Yongchang Liu,et al.  Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery. , 2016, Journal of the American Chemical Society.

[10]  Linda F. Nazar,et al.  A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode , 2016, Nature Energy.

[11]  S. Armes,et al.  Occlusion of Sulfate-Based Diblock Copolymer Nanoparticles within Calcite: Effect of Varying the Surface Density of Anionic Stabilizer Chains , 2016, Journal of the American Chemical Society.

[12]  Y. Meng,et al.  Effect of Multiple Cation Electrolyte Mixtures on Rechargeable Zn-MnO2 Alkaline Battery , 2016 .

[13]  Xiaoming Xu,et al.  Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[14]  L. Mai,et al.  Antimony nanoparticles anchored in three-dimensional carbon network as promising sodium-ion battery anode , 2016 .

[15]  Yan Yao,et al.  Graphene decorated vanadium oxide nanowire aerogel for long-cycle-life magnesium battery cathodes , 2015 .

[16]  L. Mai,et al.  Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage. , 2015, ACS applied materials & interfaces.

[17]  Boeun Lee,et al.  Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. , 2015, Chemical Communications.

[18]  Kwan-Woo Nam,et al.  Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries , 2015 .

[19]  Joseph Paul Baboo,et al.  Electrochemically Induced Structural Transformation in a γ-MnO2 Cathode of a High Capacity Zinc-Ion Battery System , 2015 .

[20]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[21]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[22]  Feiyu Kang,et al.  Energetic zinc ion chemistry: the rechargeable zinc ion battery. , 2012, Angewandte Chemie.

[23]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[24]  Ann Marie Sastry,et al.  A review of conduction phenomena in Li-ion batteries , 2010 .

[25]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[26]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[27]  Xufeng Zhou,et al.  Towards High‐Voltage Aqueous Metal‐Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System , 2015 .

[28]  Nebojsa Nakicenovic,et al.  GEA, 2012 : Global Energy Assessment - Toward a Sustainable Future , 2012 .

[29]  J. Tarascon,et al.  Wet-chemical synthesis of various iron(III) vanadates(V) by co-precipitation route , 2003 .