Transcriptional profiling of growth perturbations of the human malaria parasite Plasmodium falciparum

[1]  S. Hohmann UNICELLSYS - Understanding the cell's functional organization , 2010 .

[2]  K. Wollenberg,et al.  A complex of three related membrane proteins is conserved on malarial merozoites. , 2009, Molecular and biochemical parasitology.

[3]  Zbynek Bozdech,et al.  Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates , 2009, PLoS pathogens.

[4]  Christopher J. Tonkin,et al.  A Novel Family of Apicomplexan Glideosome-associated Proteins with an Inner Membrane-anchoring Role , 2009, The Journal of Biological Chemistry.

[5]  Virander S. Chauhan,et al.  A novel Plasmodium falciparum erythrocyte binding protein associated with the merozoite surface, PfDBLMSP. , 2009, International journal for parasitology.

[6]  C. Gilks,et al.  The global fight against HIV/AIDS, tuberculosis, and malaria: current status and future perspectives. , 2009, American journal of clinical pathology.

[7]  David L. Smith,et al.  A World Malaria Map: Plasmodium falciparum Endemicity in 2007 , 2009, PLoS medicine.

[8]  H. Ginsburg Caveat emptor: limitations of the automated reconstruction of metabolic pathways in Plasmodium. , 2009, Trends in parasitology.

[9]  Yongyuth Yuthavong,et al.  A Genetically Hard-Wired Metabolic Transcriptome in Plasmodium falciparum Fails to Mount Protective Responses to Lethal Antifolates , 2008, PLoS pathogens.

[10]  J. Coppee,et al.  Dynamic RNA profiling in Plasmodium falciparum synchronized blood stages exposed to lethal doses of artesunate , 2008, BMC Genomics.

[11]  M. Llinás,et al.  An Erythrocyte Vesicle Protein Exported by the Malaria Parasite Promotes Tubovesicular Lipid Import from the Host Cell Surface , 2008, PLoS pathogens.

[12]  A. Craig,et al.  Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes , 2008, Cell.

[13]  W. Kim,et al.  Inferring mouse gene functions from genomic-scale data using a combined functional network/classification strategy , 2008, Genome Biology.

[14]  Andrew R. Gehrke,et al.  Specific DNA-binding by Apicomplexan AP2 transcription factors , 2008, Proceedings of the National Academy of Sciences.

[15]  Yingyao Zhou,et al.  Gene expression signatures and small-molecule compounds link a protein kinase to Plasmodium falciparum motility. , 2008, Nature chemical biology.

[16]  Christopher J. Tonkin,et al.  A malaria parasite formin regulates actin polymerization and localizes to the parasite-erythrocyte moving junction during invasion. , 2008, Cell host & microbe.

[17]  Virander S. Chauhan,et al.  Identification and Characterization of a Novel Plasmodium falciparum Merozoite Apical Protein Involved in Erythrocyte Binding and Invasion , 2008, PloS one.

[18]  Matthew Bogyo,et al.  Identification of proteases that regulate erythrocyte rupture by the malaria parasite Plasmodium falciparum. , 2008, Nature chemical biology.

[19]  Yingyao Zhou,et al.  Evidence-Based Annotation of the Malaria Parasite's Genome Using Comparative Expression Profiling , 2008, PloS one.

[20]  H. Stunnenberg,et al.  Characterization of a Conserved Rhoptry-Associated Leucine Zipper-Like Protein in the Malaria Parasite Plasmodium falciparum , 2008, Infection and Immunity.

[21]  Ulf Leser,et al.  Mining phenotypes for gene function prediction , 2008, BMC Bioinformatics.

[22]  E. Winzeler,et al.  Plasmodium falciparum: genome wide perturbations in transcript profiles among mixed stage cultures after chloroquine treatment. , 2007, Experimental parasitology.

[23]  Joseph L DeRisi,et al.  Whole-genome analysis of mRNA decay in Plasmodium falciparum reveals a global lengthening of mRNA half-life during the intra-erythrocytic development cycle , 2007, Genome Biology.

[24]  Stefan Wuchty,et al.  A draft of protein interactions in the malaria parasite P. falciparum. , 2007, Journal of proteome research.

[25]  L. Aravind,et al.  Molecular Factors and Biochemical Pathways Induced by Febrile Temperature in Intraerythrocytic Plasmodium falciparum Parasites , 2007, Infection and Immunity.

[26]  Manuel Llinás,et al.  Selection of long oligonucleotides for gene expression microarrays using weighted rank-sum strategy , 2007, BMC Bioinformatics.

[27]  Olga G. Troyanskaya,et al.  A scalable method for integration and functional analysis of multiple microarray datasets , 2006, Bioinform..

[28]  Solomon Nwaka,et al.  Innovative lead discovery strategies for tropical diseases , 2006, Nature Reviews Drug Discovery.

[29]  T. Gilberger,et al.  A Conserved Region in the EBL Proteins Is Implicated in Microneme Targeting of the Malaria Parasite Plasmodium falciparum* , 2006, Journal of Biological Chemistry.

[30]  Christian J Stoeckert,et al.  Computational modeling of the Plasmodium falciparum interactome reveals protein function on a genome-wide scale. , 2006, Genome research.

[31]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[32]  Dave Richard,et al.  A Conserved Molecular Motor Drives Cell Invasion and Gliding Motility across Malaria Life Cycle Stages and Other Apicomplexan Parasites* , 2006, Journal of Biological Chemistry.

[33]  A. Cowman,et al.  Invasion of Red Blood Cells by Malaria Parasites , 2006, Cell.

[34]  Manuel Llinás,et al.  Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains , 2006, Nucleic acids research.

[35]  Elizabeth A. Winzeler,et al.  Applied systems biology and malaria , 2006, Nature Reviews Microbiology.

[36]  D. Molyneux Control of human parasitic diseases: Context and overview. , 2006, Advances in parasitology.

[37]  Ting Chen,et al.  An integrated approach to the prediction of domain-domain interactions , 2006, BMC Bioinformatics.

[38]  Matthias Marti,et al.  Re-defining the Golgi complex in Plasmodium falciparum using the novel Golgi marker PfGRASP , 2005, Journal of Cell Science.

[39]  M. Fraser,et al.  High-efficiency transformation of Plasmodium falciparum by the lepidopteran transposable element piggyBac. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  M. Vignali,et al.  A protein interaction network of the malaria parasite Plasmodium falciparum , 2005, Nature.

[41]  T. Triglia,et al.  Characterisation of two novel proteins from the asexual stage of Plasmodium falciparum, H101 and H103. , 2005, Molecular and biochemical parasitology.

[42]  Robert M. Seymour,et al.  Using large-scale perturbations in gene network reconstruction , 2005, BMC Bioinformatics.

[43]  A. Cowman,et al.  Molecular and functional aspects of parasite invasion. , 2004, Trends in parasitology.

[44]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[45]  M. P. Doyle,et al.  Context and Overview , 2004 .

[46]  G. Sumara,et al.  A Probabilistic Functional Network of Yeast Genes , 2004 .

[47]  Susumu Goto,et al.  The KEGG resource for deciphering the genome , 2004, Nucleic Acids Res..

[48]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[49]  Patricia De la Vega,et al.  Discovery of Gene Function by Expression Profiling of the Malaria Parasite Life Cycle , 2003, Science.

[50]  Edward M Marcotte,et al.  Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages , 2003, Nature Biotechnology.

[51]  J. Derisi,et al.  The Transcriptome of the Intraerythrocytic Developmental Cycle of Plasmodium falciparum , 2003, PLoS biology.

[52]  S. Hoffman,et al.  PfSPATR, a Plasmodium falciparum Protein Containing an Altered Thrombospondin Type I Repeat Domain Is Expressed at Several Stages of the Parasite Life Cycle and Is the Target of Inhibitory Antibodies* , 2003, Journal of Biological Chemistry.

[53]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[54]  Kui Zhang,et al.  Prediction of protein function using protein-protein interaction data , 2002, Proceedings. IEEE Computer Society Bioinformatics Conference.

[55]  L. Sibley,et al.  Disruption of microtubules uncouples budding and nuclear division in Toxoplasma gondii. , 2002, Journal of cell science.

[56]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[57]  D. Fidock,et al.  Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. , 1997, Proceedings of the National Academy of Sciences of the United States of America.