The Asymptotic Distribution of Quadratic Discrepancies

In Numerical Analysis, several discrepancies have been introduced to test that a sample of n points in the unit hypercube [0, 1]d comes from a uniform distribution. An outstanding example is given by Hickernell’s generalized \(\mathcal{L}^P \)-discrepancies, that constitute a generalization of the Kolmogorov-Smirnov and the Cramer-von Mises statistics. These discrepancies can be used in numerical integration by Monte Carlo and quasi-Monte Carlo methods, design of experiments, uniformity and goodness of fit tests. In this paper, after having recalled some necessary asymptotic results derived in companion papers, we show that the case of \(\mathcal{L}^2 \)-discrepancies is more convenient to handle and we provide a new computational approximation of their asymptotic distribution. As an illustration, we show that our algorithm is able to recover the tabulated asymptotic distribution of the Cramer-von Mises statistic. The results so obtained are very general and can be applied with minor modifications to other discrepancies, such as the diaphony, the weighted spectral test, the Fourier discrepancy and the class of chi-square tests.

[1]  Peter Hellekalek,et al.  On correlation analysis of pseudorandom numbers , 1998 .

[2]  Peter Hellekalek,et al.  On the assessment of random and quasi-random point sets , 1998 .

[3]  G. S. Watson,et al.  Goodness-of-fit tests on a circle. II , 1961 .

[4]  J. Gil-Pelaez Note on the inversion theorem , 1951 .

[5]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[6]  H. Riedwyl Goodness of Fit , 1967 .

[7]  Spassimir H. Paskov,et al.  Average Case Complexity of Multivariate Integration for Smooth Functions , 1993, J. Complex..

[8]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[9]  Robert H. Brown The Distribution Function of Positive Definite Quadratic Forms in Normal Random Variables , 1986 .

[10]  Julian J. Faraway,et al.  The Exact and Asymptotic Distributions of Cramer-von Mises Statistics , 1996 .

[11]  F. J. Hickernell Lattice rules: how well do they measure up? in random and quasi-random point sets , 1998 .

[12]  Robert F. Tichy,et al.  Lp-discrepancy and statistical independence of sequences , 1999 .

[13]  Harald Niederreiter,et al.  The weighted spectral test: diaphony , 1998, TOMC.

[14]  R. Kleiss,et al.  Discrepancy-based error estimates for Quasi-Monte Carlo. 2: Applications in one dimension , 1996, hep-ph/9603211.

[15]  Hannes Leeb Asymptotic properties of the spectral test, diaphony, and related quantities , 2002, Math. Comput..

[16]  Jiri Hoogland,et al.  Quasi-Monte Carlo, Discrepancies and Error Estimates , 1998 .

[17]  R. Tichy,et al.  Average Case Analysis of Numerical Integration , 1999 .

[18]  F. James,et al.  Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers , 1996, hep-ph/9606309.

[19]  Karin Frank,et al.  Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..

[20]  Jiri Hoogland,et al.  Discrepancy-based error estimates for Quasi-Monte Carlo. I. General formalism , 1996 .

[21]  F. J. Hickernell What Affects the Accuracy of Quasi-Monte Carlo Quadrature? , 2000 .

[22]  Tony Warnock,et al.  Computational investigations of low-discrepancy point-sets. , 1972 .

[23]  F. J. Hickernell Quadrature Error Bounds with Applications to Lattice Rules , 1997 .

[24]  Jiri Hoogland,et al.  Gaussian limits for discrepancies I. Asymptotic results , 1997, physics/9708014.

[25]  R. Davies The distribution of a linear combination of 2 random variables , 1980 .

[26]  O. Strauch $L^2$ discrepancy , 1994 .

[27]  S. Rice Distribution of Quadratic Forms in Normal Random Variables—Evaluation by Numerical Integration , 1980 .

[28]  P. Hellekalek,et al.  Random and Quasi-Random Point Sets , 1998 .

[29]  R. Kleiss,et al.  Gaussian limits for discrepancies , 1998 .

[30]  Pierre L'Ecuyer,et al.  Random Number Generators: Selection Criteria and Testing , 1998 .

[31]  Russel E. Caflisch,et al.  Quasi-Random Sequences and Their Discrepancies , 1994, SIAM J. Sci. Comput..

[32]  Gilles Pagès,et al.  Sequences with low discrepancy and pseudo-random numbers:theoretical results and numerical tests , 1997 .

[33]  G. S. Watson Another test for the uniformity of a circular distribution. , 1967, Biometrika.

[34]  R. Davies Numerical inversion of a characteristic function , 1973 .

[35]  Vsevolod F. Lev On two versions ofL2-discrepancy and geometrical interpretation of diaphony , 1995 .

[36]  J. Imhof Computing the distribution of quadratic forms in normal variables , 1961 .

[37]  V. Koltchinskii,et al.  Random matrix approximation of spectra of integral operators , 2000 .

[38]  J. Sheil,et al.  The Distribution of Non‐Negative Quadratic Forms in Normal Variables , 1977 .

[39]  Fred J. Hickernell,et al.  Testing multivariate uniformity and its applications , 2001, Math. Comput..

[40]  Fred J. Hickernell,et al.  The mean square discrepancy of randomized nets , 1996, TOMC.

[41]  Jiri Hoogland,et al.  Discrepancy - based error estimates for quasi - Monte Carlo , 1996 .

[42]  Fred J. Hickernell,et al.  Goodness-of-fit statistics, discrepancies and robust designs , 1999 .