A further study on the encoding complexity of quantum stabilizer codes
暂无分享,去创建一个
[1] A. Calderbank,et al. Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.
[2] Tom Verhoeff,et al. An updated table of minimum-distance bounds for binary linear codes , 1987, IEEE Trans. Inf. Theory.
[3] Pradeep Kiran Sarvepalli,et al. Encoding Subsystem Codes , 2008, 0806.4954.
[4] R. Cleve,et al. Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.
[5] Daniel Gottesman,et al. Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.
[6] Chung-Chin Lu,et al. A Construction of Quantum Stabilizer Codes Based on Syndrome Assignment by Classical Parity-Check Matrices , 2007, IEEE Transactions on Information Theory.
[7] Scott Aaronson,et al. Improved Simulation of Stabilizer Circuits , 2004, ArXiv.
[8] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[9] N. Sloane,et al. Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.
[10] S. Litsyn,et al. On binary constructions of quantum codes , 1998, Proceedings of the 1999 IEEE Information Theory and Communications Workshop (Cat. No. 99EX253).