Semiconductor nanowire devices

For the past ten years the idea of using self-assembled nanostructures to overcome the limitations of top-down fabrication has been the driving force behind the tremendous interest in semiconducting nanowires and nanotubes. However, it has become clear that the engineering issues associated with bottom-up technology using self-assembled nanowires and nanotubes remain challenging.

[1]  Bin Yu,et al.  Synthesis and nanoscale thermal encoding of phase-change nanowires , 2007 .

[2]  S.C. Rustagi,et al.  High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices , 2006, IEEE Electron Device Letters.

[3]  Se-Ho Lee,et al.  Synthesis and characterization of Ge2Sb2Te5 nanowires with memory switching effect. , 2006, Journal of the American Chemical Society.

[4]  Se-Ho Lee,et al.  Size-dependent phase transition memory switching behavior and low writing currents in GeTe nanowires , 2006 .

[5]  B. Johnson,et al.  Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology , 2004 .

[6]  Sourobh Raychaudhuri,et al.  Critical dimensions in coherently strained coaxial nanowire heterostructures , 2006 .

[7]  Michael A. Haase,et al.  Recent Progress in Organic Electronics: Materials, Devices, and Processes , 2004 .

[8]  Roger Fabian W. Pease,et al.  Self‐limiting oxidation of Si nanowires , 1993 .

[9]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[10]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[11]  Peidong Yang,et al.  The Chemistry and Physics of Semiconductor Nanowires , 2005 .

[12]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[13]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[14]  Walter Riess,et al.  Vertical surround-gated silicon nanowire impact ionization field-effect transistors , 2007 .

[15]  Dong Yu,et al.  Germanium telluride nanowires and nanohelices with memory-switching behavior. , 2006, Journal of the American Chemical Society.

[16]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[17]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[18]  J. M. Daughton,et al.  Magnetic Tunneling Applied to Memory (Invited) , 1997 .

[19]  F. Glas Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires , 2006 .

[20]  M. Meyyappan,et al.  Indium selenide nanowire phase-change memory , 2007 .

[21]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[22]  C. Li,et al.  Selective functionalization of In2O3 nanowire mat devices for biosensing applications. , 2005, Journal of the American Chemical Society.

[23]  Martin Moskovits,et al.  CHEMICAL SENSING AND CATALYSIS BY ONE-DIMENSIONAL METAL-OXIDE NANOSTRUCTURES , 2004 .

[24]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[25]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[26]  Se-Ho Lee,et al.  Comparative study of memory-switching phenomena in phase change GeTe and Ge2Sb2Te5 nanowire devices , 2008 .

[27]  J. Brews Subthreshold behavior of uniformly and nonuniformly doped long-channel MOSFET , 1979, IEEE Transactions on Electron Devices.

[28]  Charles M. Lieber,et al.  Nanoscale Science and Technology: Building a Big Future from Small Things , 2003 .

[29]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[30]  Yasuo Takahashi,et al.  Fabrication of thickness‐controlled silicon nanowires and their characteristics , 1995 .

[31]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[32]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[33]  Roger Fabian W. Pease,et al.  Self‐limiting oxidation for fabricating sub‐5 nm silicon nanowires , 1994 .

[34]  Zhong Lin Wang Functional oxide nanobelts: materials, properties and potential applications in nanosystems and biotechnology. , 2004, Annual review of physical chemistry.

[35]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.