Adaptive Low-Rank Kernel Subspace Clustering

In this paper, we present a kernel subspace clustering method that can handle non-linear models. In contrast to recent kernel subspace clustering methods which use predefined kernels, we propose to learn a low-rank kernel matrix, with which mapped data in feature space are not only low-rank but also self-expressive. In this manner, the low-dimensional subspace structures of the (implicitly) mapped data are retained and manifested in the high-dimensional feature space. We evaluate the proposed method extensively on both motion segmentation and image clustering benchmarks, and obtain superior results, outperforming the kernel subspace clustering method that uses standard kernels[Patel 2014] and other state-of-the-art linear subspace clustering methods.

[1]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[2]  Junmo Kim,et al.  Rigid Motion Segmentation Using Randomized Voting , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Dong Xu,et al.  Robust Kernel Low-Rank Representation , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[4]  Hongdong Li,et al.  Robust Motion Segmentation with Unknown Correspondences , 2014, ECCV.

[5]  Xiaojun Wu,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Thomas S. Huang,et al.  Graph Regularized Nonnegative Matrix Factorization for Data Representation. , 2011, IEEE transactions on pattern analysis and machine intelligence.

[8]  Hongdong Li,et al.  Efficient dense subspace clustering , 2014, IEEE Winter Conference on Applications of Computer Vision.

[9]  Changyin Sun,et al.  Kernel Low-Rank Representation for face recognition , 2015, Neurocomputing.

[10]  Ethem Alpaydin,et al.  Multiple Kernel Learning Algorithms , 2011, J. Mach. Learn. Res..

[11]  Y. Zhang,et al.  Augmented Lagrangian alternating direction method for matrix separation based on low-rank factorization , 2014, Optim. Methods Softw..

[12]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[13]  René Vidal,et al.  Structured Sparse Subspace Clustering: A unified optimization framework , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  René Vidal,et al.  Latent Space Sparse Subspace Clustering , 2013, 2013 IEEE International Conference on Computer Vision.

[16]  René Vidal,et al.  A closed form solution to robust subspace estimation and clustering , 2011, CVPR 2011.

[17]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[18]  Yuxiao Hu,et al.  Learning a Spatially Smooth Subspace for Face Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[19]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[20]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[21]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[22]  Hongdong Li,et al.  Robust Multi-Body Feature Tracker: A Segmentation-Free Approach , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[24]  Anders P. Eriksson,et al.  Non-linear Dimensionality Regularizer for Solving Inverse Problems , 2016, ArXiv.

[25]  Zhuwen Li,et al.  Perspective Motion Segmentation via Collaborative Clustering , 2013, 2013 IEEE International Conference on Computer Vision.

[26]  René Vidal,et al.  Low rank subspace clustering (LRSC) , 2014, Pattern Recognit. Lett..

[27]  R. Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications. , 2013, IEEE transactions on pattern analysis and machine intelligence.

[28]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[29]  Zhi-Quan Luo,et al.  Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems , 2015, ICASSP.

[30]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Alessio Del Bue,et al.  Bilinear Factorization via Augmented Lagrange Multipliers , 2010, ECCV.

[32]  Guoyin Li,et al.  Global Convergence of Splitting Methods for Nonconvex Composite Optimization , 2014, SIAM J. Optim..

[33]  Andy Harter,et al.  Parameterisation of a stochastic model for human face identification , 1994, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision.

[34]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[35]  Roberto Tron RenVidal A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007 .

[36]  Guangliang Chen,et al.  Spectral Curvature Clustering (SCC) , 2009, International Journal of Computer Vision.

[37]  Venu Madhav Govindu,et al.  Efficient Higher-Order Clustering on the Grassmann Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[38]  René Vidal,et al.  Kernel sparse subspace clustering , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[39]  Daniel P. Robinson,et al.  Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Hongdong Li,et al.  Shape Interaction Matrix Revisited and Robustified: Efficient Subspace Clustering with Corrupted and Incomplete Data , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[41]  Tat-Jun Chin,et al.  Clustering with Hypergraphs: The Case for Large Hyperedges , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[43]  Junbin Gao,et al.  Kernel Sparse Subspace Clustering on Symmetric Positive Definite Manifolds , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Huan Xu,et al.  Provable Subspace Clustering: When LRR Meets SSC , 2013, IEEE Transactions on Information Theory.

[45]  Daniel P. Robinson,et al.  Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[46]  Shuicheng Yan,et al.  Robust and Efficient Subspace Segmentation via Least Squares Regression , 2012, ECCV.

[47]  Robert Pless,et al.  Manifold clustering , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[48]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.