Polyhedron realization for shape transformation

Polyhedron realization is the transformation of a polyhedron into a convex polyhedron with an isomorphic vertex neighborhood graph. We present in this paper a novel algorithm for polyhedron realization, which is general, practical, efficient, and works for any zero–genus polyhedron. We show how the algorithm can be used for finding a correspondence for shape transformation. After the two given polyhedra are being realized, it is easy to merge their vertex–neighborhood graphs into a common graph. This graph is then induced back onto the original polyhedra. The common vertex–neighborhood graph allows the interpolation of the corresponding vertices.

[1]  D. Thalmann,et al.  A general algorithms for 3-D shape interpolation in a facet-based representation , 1989 .

[2]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[3]  Daniel Thalmann,et al.  State-of-the-art in Computer Animation , 1989, Springer Japan.

[4]  John F. Hughes,et al.  Scheduled Fourier volume morphing , 1992, SIGGRAPH.

[5]  George Wolberg,et al.  Digital image warping , 1990 .

[6]  David G. Kirkpatrick,et al.  Determining the Separation of Preprocessed Polyhedra - A Unified Approach , 1990, ICALP.

[7]  Daniel Cohen-Or,et al.  Contour blending using warp-guided distance field interpolation , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[8]  Arthur W. Toga,et al.  Distance field manipulation of surface models , 1992, IEEE Computer Graphics and Applications.

[9]  Cohen-OrDaniel,et al.  Three-dimensional distance field metamorphosis , 1998 .

[10]  Marc Levoy,et al.  Feature-based volume metamorphosis , 1995, SIGGRAPH.

[11]  E. W. Bethel,et al.  Shape Distortion in Computer-Assisted Keyframe Animation , 1989 .

[12]  Richard E. Parent,et al.  Shape averaging and its applications to industrial design , 1989, IEEE Computer Graphics and Applications.

[13]  Ari Rappoport,et al.  Shape blending using the star-skeleton representation , 1995, IEEE Computer Graphics and Applications.

[14]  Wayne E. Carlson,et al.  Shape transformation for polyhedral objects , 1992, SIGGRAPH.

[15]  Hiromasa Suzuki,et al.  3D geometric metamorphosis based on harmonic map , 1997, Proceedings The Fifth Pacific Conference on Computer Graphics and Applications.

[16]  Craig Gotsman,et al.  Polygon morphing using a multiresolution representation , 1995 .

[17]  Leonidas J. Guibas,et al.  Morphing Simple Polygons , 1994, SCG '94.

[18]  Wayne E. Carlson,et al.  Establishing correspondences by topological merging: a new approach to 3-d shape transformation" pro , 1991 .

[19]  David G. Kirkpatrick,et al.  A Linear Algorithm for Determining the Separation of Convex Polyhedra , 1985, J. Algorithms.

[20]  Arie E. Kaufman,et al.  Wavelet-based volume morphing , 1994, Proceedings Visualization '94.

[21]  Daniel Cohen-Or,et al.  Warp-guided object-space morphing , 1998, The Visual Computer.

[22]  Francis Y. L. Chin,et al.  Interpolating Polyhedral Models Using Intrinsic Shape Parameters , 1997 .

[23]  Thaddeus Beier,et al.  Feature-based image metamorphosis , 1998 .

[24]  Jarek Rossignac,et al.  Solid-interpolating deformations: Construction and animation of PIPs , 1991, Comput. Graph..

[25]  Daniel Cohen-Or,et al.  Three-dimensional distance field metamorphosis , 1998, TOGS.

[26]  Boris Aronov,et al.  On Compatible Triangulations of Simple Polygons , 1993, Comput. Geom..

[27]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[28]  Peisheng Gao,et al.  2-D shape blending: an intrinsic solution to the vertex path problem , 1993, SIGGRAPH.

[29]  Richard E. Parent Shape transformation by boundary representation interpolation: A recursive approach to establishing face correspondences , 1992, Comput. Animat. Virtual Worlds.