Effective Description of Anisotropic Wave Dispersion in Mechanical Band-Gap Metamaterials via the Relaxed Micromorphic Model

In this paper the relaxed micromorphic material model for anisotropic elasticity is used to describe the dynamical behavior of a band-gap metamaterial with tetragonal symmetry. Unlike other continuum models (Cauchy, Cosserat, second gradient, classical Mindlin–Eringen micromorphic etc.), the relaxed micromorphic model is endowed to capture the main microscopic and macroscopic characteristics of the targeted metamaterial, namely, stiffness, anisotropy, dispersion and band-gaps. The simple structure of our material model, which simultaneously lives on a micro-, a meso- and a macroscopic scale, requires only the identification of a limited number of frequency-independent and thus truly constitutive parameters, valid for both static and wave-propagation analyses in the plane. The static macro- and micro-parameters are identified by numerical homogenization in static tests on the unit-cell level in Neff et al. (J. Elast., https://doi.org/10.1007/s10659-019-09752-w , 2019 , in this volume). The remaining inertia parameters for dynamical analyses are calibrated on the dispersion curves of the same metamaterial as obtained by a classical Bloch–Floquet analysis for two wave directions. We demonstrate via polar plots that the obtained material parameters describe very well the response of the structural material for all wave directions in the plane, thus covering the complete panorama of anisotropy of the targeted metamaterial.

[1]  J. Schröder A numerical two-scale homogenization scheme: the FE 2 -method , 2014 .

[2]  Francesco dell’Isola,et al.  Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua , 2012 .

[3]  Kirill Cherednichenko,et al.  On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media , 2000 .

[4]  Patrizio Neff,et al.  Real wave propagation in the isotropic-relaxed micromorphic model , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  P. Neff,et al.  Modeling Phononic Crystals via the Weighted Relaxed Micromorphic Model with Free and Gradient Micro-Inertia , 2016, 1610.03878.

[6]  Marc G. D. Geers,et al.  Transient computational homogenization for heterogeneous materials under dynamic excitation , 2013 .

[7]  P. Neff,et al.  Nonstandard micro-inertia terms in the relaxed micromorphic model: well-posedness for dynamics , 2018, Mathematics and Mechanics of Solids.

[8]  L. Truskinovsky,et al.  Lattice dynamics from a continuum viewpoint , 2012 .

[9]  M. Svanadze Potential Method in the Theory of Elasticity for Triple Porosity Materials , 2017 .

[10]  E. Aifantis,et al.  On the role of micro-inertia in enriched continuum mechanics , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[12]  Walter Steurer,et al.  Photonic and phononic quasicrystals , 2007 .

[13]  Patrizio Neff,et al.  Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics , 2016, 1601.03667.

[14]  Samuel Forest,et al.  Homogenization methods and mechanics of generalized continua - part 2 , 2002 .

[15]  M. Geers,et al.  Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum , 2016, Computational Mechanics.

[16]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[17]  Jörg Hohe,et al.  Characteristics of mechanical metamaterials based on buckling elements , 2017 .

[18]  Stéphane Hans,et al.  Wave propagation and non-local effects in periodic frame materials: Generalized continuum mechanics , 2015 .

[19]  P. M. Squet Local and Global Aspects in the Mathematical Theory of Plasticity , 1985 .

[20]  Patrizio Neff,et al.  On material constants for micromorphic continua , 2004 .

[21]  Patrizio Neff,et al.  Low-and high-frequency Stoneley waves, reflection and transmission at a Cauchy/relaxed micromorphic interface , 2018, 1810.12578.

[22]  Assyr Abdulle,et al.  The finite element heterogeneous multiscale method: a computational strategy for multiscale PDEs , 2009 .

[23]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (I). Instantaneous and averaged mechanical variables , 2003 .

[24]  P. Neff,et al.  First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Giuseppe Rosi,et al.  Reflection and transmission of elastic waves at interfaces embedded in non-local band-gap metamaterials : a comprehensive study via the relaxed micromorphic model , 2016, 1602.05218.

[26]  Patrizio Neff,et al.  Identification of Scale-Independent Material Parameters in the Relaxed Micromorphic Model Through Model-Adapted First Order Homogenization , 2019, Journal of Elasticity.

[27]  Luca Placidi,et al.  A unifying perspective: the relaxed linear micromorphic continuum , 2013, Continuum Mechanics and Thermodynamics.

[28]  C. Boutin,et al.  Homogenisation of periodic discrete medium: Application to dynamics of framed structures , 2003 .

[29]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[30]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[31]  Stefan Diebels,et al.  Evaluation of generalized continuum substitution models for heterogeneous materials , 2012 .

[32]  P. Neff,et al.  Relaxed micromorphic model of transient wave propagation in anisotropic band-gap metastructures , 2018, International Journal of Solids and Structures.

[33]  Tarek I. Zohdi,et al.  Homogenization Methods and Multiscale Modeling , 2004 .

[34]  Youping Chen,et al.  Connecting molecular dynamics to micromorphic theory. (II). Balance laws , 2003 .

[35]  V. P. Smyshlyaev,et al.  Propagation and localization of elastic waves in highly anisotropic periodic composites via two-scale homogenization , 2009 .

[36]  N. Kikuchi,et al.  A comparison of homogenization and standard mechanics analyses for periodic porous composites , 1992 .

[37]  Claude Boutin,et al.  Long wavelength inner-resonance cut-off frequencies in elastic composite materials , 2012 .

[38]  Samuel Forest,et al.  Generalized continua and non‐homogeneous boundary conditions in homogenisation methods , 2011 .

[39]  P. Neff,et al.  A panorama of dispersion curves for the weighted isotropic relaxed micromorphic model , 2016, 1610.03296.

[40]  Sia Nemat-Nasser,et al.  Homogenization of periodic elastic composites and locally resonant sonic materials , 2011 .

[41]  I. Jasiuk,et al.  A micromechanically based couple-stress model of an elastic orthotropic two-phase composite , 2002 .

[42]  N. Auffray On the algebraic structure of isotropic generalized elasticity theories , 2013, 1309.3939.

[43]  Yuesheng Wang,et al.  Topology optimization of anisotropic broadband double-negative elastic metamaterials , 2017 .

[44]  N. Auffray,et al.  Symmetry classes for even-order tensors , 2013, 1301.1889.

[45]  F. Brioschi Sur les équations différentielles linéaires , 1879 .

[46]  G. Rosi,et al.  Band gaps in the relaxed linear micromorphic continuum , 2014, 1405.3493.

[47]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .

[48]  N. Auffray,et al.  Symmetry classes for odd‐order tensors , 2014 .

[49]  Youping Chen,et al.  Determining material constants in micromorphic theory through phonon dispersion relations , 2003 .

[50]  N. Auffray,et al.  Anisotropic and dispersive wave propagation within strain-gradient framework , 2016, 1601.07064.

[51]  A. Abdulle ANALYSIS OF A HETEROGENEOUS MULTISCALE FEM FOR PROBLEMS IN ELASTICITY , 2006 .

[52]  M. Lazar,et al.  The relaxed linear micromorphic continuum: well-posedness of the static problem and relations to the gauge theory of dislocations , 2014, 1403.3442.

[53]  Luca Placidi,et al.  The relaxed linear micromorphic continuum: Existence, uniqueness and continuous dependence in dynamics , 2013, 1308.3762.

[54]  Richard Craster,et al.  High-frequency homogenization of zero-frequency stop band photonic and phononic crystals , 2013, 1304.5782.

[55]  P. Neff,et al.  Complete band gaps including non-local effects occur only in the relaxed micromorphic model , 2016, 1602.04315.

[56]  Pierre Suquet,et al.  Effective properties of nonlinear composites , 1997 .

[57]  Luca Placidi,et al.  Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps , 2013, 1309.1722.

[58]  S. Torquato,et al.  Scale effects on the elastic behavior of periodic andhierarchical two-dimensional composites , 1999 .

[59]  Vittorio M. N. Passaro,et al.  Phononic and photonic band gap structures: modelling and applications , 2010 .

[60]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[61]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[62]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[63]  V. Zhikov,et al.  Operator estimates in homogenization theory , 2016 .

[64]  Patrizio Neff,et al.  Microstructure-related Stoneley waves and their effect on the scattering properties of a 2D Cauchy/relaxed-micromorphic interface , 2019, Wave Motion.

[65]  Joachim Weickert,et al.  Mathematical Morphology on Tensor Data Using the Loewner Ordering , 2006, Visualization and Processing of Tensor Fields.

[66]  Stéphane Hans,et al.  Large scale modulation of high frequency waves in periodic elastic composites , 2014 .

[67]  N. Auffray,et al.  Matrix representations for 3D strain-gradient elasticity , 2012, 1301.1890.

[68]  Christian Huet,et al.  Application of variational concepts to size effects in elastic heterogeneous bodies , 1990 .

[69]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[70]  M. Hlaváček A continuum theory for isotropic two-phase elastic composites , 1975 .

[71]  Massimo Ruzzene,et al.  Phononic properties of hexagonal chiral lattices , 2009 .

[72]  Luca Placidi,et al.  On the validity range of strain-gradient elasticity: A mixed static-dynamic identification procedure , 2018 .

[73]  Frank Diederich,et al.  The Non Linear Field Theories Of Mechanics , 2016 .

[74]  Sia Nemat-Nasser,et al.  Overall dynamic constitutive relations of layered elastic composites , 2011, 1105.5173.

[75]  G. Hütter Homogenization of a Cauchy continuum towards a micromorphic continuum , 2017 .

[76]  Giuseppe Rosi,et al.  Reflection and transmission of elastic waves in non-local bandgap metamaterials : a comprehensive study via the relaxed micromorphic model , 2018 .

[77]  Patrizio Neff,et al.  A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results , 2007 .

[78]  Ivan Giorgio,et al.  Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials , 2014 .

[79]  Bernhard Eidel,et al.  The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method , 2017, 1701.08313.

[80]  Y. Kim,et al.  Negative refraction experiments with guided shear-horizontal waves in thin phononic crystal plates , 2011 .

[81]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[82]  A. Eringen Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.