Brain Electrical Activity and Sensory Processing during Waking and Sleep States

[1]  G. Moruzzi,et al.  Brain stem reticular formation and activation of the EEG. , 1949, Electroencephalography and clinical neurophysiology.

[2]  Edward V. Evarts,et al.  PHOTICALLY EVOKED RESPONSES IN VISUAL CORTEX UNITS DURING SLEEP AND WAKING , 1963 .

[3]  G. Moruzzi,et al.  The sleep-waking cycle. , 1972, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[4]  Donald M. MacKay,et al.  Visually Evoked Potentials and Visual Perception in Man , 1973 .

[5]  M. Deschenes,et al.  Inhibitory processes and interneuronal apparatus in motor cortex during sleep and waking. II. Recurrent and afferent inhibition of pyramidal tract neurons. , 1974, Journal of neurophysiology.

[6]  K. Krnjević,et al.  Chemical Nature of Synaptic Transmission in Vertebrates , 1974 .

[7]  Barbara E. Jones,et al.  Effects of locus coeruleus lesions upon cerebral monoamine content, sleep-wakefulness states and the response to amphetamine in the cat , 1977, Brain Research.

[8]  A M Graybiel,et al.  Fiber connections of the basal ganglia. , 1979, Progress in brain research.

[9]  J Hyvärinen,et al.  Influence of attentive behavior on neuronal responses to vibration in primary somatosensory cortex of the monkey. , 1980, Journal of neurophysiology.

[10]  B. C. Motter,et al.  The influence of attentive fixation upon the excitability of the light- sensitive neurons of the posterior parietal cortex , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  D. Hubel,et al.  Effects of sleep and arousal on the processing of visual information in the cat , 1981, Nature.

[12]  M. Descheˆnes,et al.  Anterograde tracer and field potential analysis of the neocortical layer I projection from nucleus ventralis medialis of the thalamus in cat , 1982, Neuroscience.

[13]  J E Desmedt,et al.  The cognitive P40, N60 and P100 components of somatosensory evoked potentials and the earliest electrical signs of sensory processing in man. , 1983, Electroencephalography and clinical neurophysiology.

[14]  J. Hobson,et al.  REM sleep burst neurons, PGO waves, and eye movement information. , 1983, Journal of neurophysiology.

[15]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[16]  A. Sillito,et al.  The cholinergic influence on the function of the cat dorsal lateral geniculate nucleus (dLGN) , 1983, Brain Research.

[17]  A. Sillito,et al.  Cholinergic modulation of the functional organization of the cat visual cortex , 1983, Brain Research.

[18]  F. Bloom,et al.  Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. , 1983, Physiological reviews.

[19]  R. McCarley,et al.  Alterations in membrane potential and excitability of cat medial pontine reticular formation neurons during changes in naturally occurring sleep-wake states , 1984, Brain Research.

[20]  M. Deschenes,et al.  Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. , 1985, Journal of neurophysiology.

[21]  J E Desmedt,et al.  Color imaging of parietal and frontal somatosensory potential fields evoked by stimulation of median or posterior tibial nerve in man. , 1985, Electroencephalography and clinical neurophysiology.

[22]  Larry L. Butcher,et al.  Cholinergic systems in the rat brain: III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain , 1986, Brain Research Bulletin.

[23]  R. Nicoll,et al.  Actions of noradrenaline recorded intracellularly in rat hippocampal CA1 pyramidal neurones, in vitro. , 1986, The Journal of physiology.

[24]  M. Steriade,et al.  Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  G. Chrousos,et al.  Functional corticotropin releasing factor receptors in the primate peripheral sympathetic nervous system , 1986, Nature.

[26]  David A. McCormick,et al.  Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance , 1986, Nature.

[27]  H C Pape,et al.  Excitatory and differential disinhibitory actions of acetylcholine in the lateral geniculate nucleus of the cat. , 1986, The Journal of physiology.

[28]  M. Deschenes,et al.  The deafferented reticular thalamic nucleus generates spindle rhythmicity. , 1987, Journal of neurophysiology.

[29]  A. Parent,et al.  Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei , 1987, Brain Research.

[30]  M. Steriade Intrathalamic and brainstem-thalamic networks involved in resting and alert states , 1988 .

[31]  R. Llinás,et al.  The functional states of the thalamus and the associated neuronal interplay. , 1988, Physiological reviews.

[32]  A. Parent,et al.  Projections of brainstem core cholinergic and non-cholinergic neurons of cat to intralaminar and reticular thalamic nuclei , 1988, Neuroscience.

[33]  A. Parent,et al.  Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey , 1988, Neuroscience.

[34]  M. Descheˆnes,et al.  The effects of brainstem peribrachial stimulation on perigeniculate neurons: The blockage of spindle waves , 1989, Neuroscience.

[35]  Ivan Soltesz,et al.  Pacemaker-like and other types of spontaneous membrane potential oscillations of thalamocortical cells , 1990, Neuroscience Letters.

[36]  G Oakson,et al.  Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[38]  G Oakson,et al.  Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  D. Paré,et al.  Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thalamocortical neurons to stimulation of mesopontine cholinergic nuclei. , 1991, Journal of neurophysiology.

[40]  M. Steriade,et al.  Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  M. Steriade Alertness, Quiet Sleep, Dreaming , 1991 .

[42]  D. Paré,et al.  Various types of inhibitory postsynaptic potentials in anterior thalamic cells are differentially altered by stimulation of laterodorsal tegmental cholinergic nucleus , 1992, Neuroscience.

[43]  W. Singer Synchronization of cortical activity and its putative role in information processing and learning. , 1993, Annual review of physiology.

[44]  M Steriade,et al.  Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  R. Llinás,et al.  Coherent 40-Hz oscillation characterizes dream state in humans. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Steriade,et al.  A novel slow (< 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[47]  D. Contreras,et al.  The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  D. Contreras,et al.  Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  E. G. Jones,et al.  Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus , 1995, The Journal of comparative neurology.

[50]  M Steriade,et al.  Disconnection of intracortical synaptic linkages disrupts synchronization of a slow oscillation , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  D. Contreras,et al.  Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  D Contreras,et al.  Mechanisms of long‐lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. , 1996, The Journal of physiology.

[54]  D Contreras,et al.  Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. , 1996, The Journal of physiology.

[55]  M Steriade,et al.  Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. , 1996, Journal of neurophysiology.

[56]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[57]  P. Achermann,et al.  Low-frequency (<1Hz) oscillations in the human sleep electroencephalogram , 1997, Neuroscience.

[58]  M. Steriade Synchronized activities of coupled oscillators in the cerebral cortex and thalamus at different levels of vigilance. , 1997, Cerebral cortex.

[59]  Florin Amzica,et al.  The K-complex: Its slow (<1-Hz) rhythmicity and relation to delta waves , 1997, Neurology.

[60]  N Dürmüller,et al.  Role of Thalamic and Cortical Neurons in Augmenting Responses and Self-Sustained Activity: Dual Intracellular Recordings In Vivo , 1998, The Journal of Neuroscience.

[61]  M Steriade,et al.  Coalescence of sleep rhythms and their chronology in corticothalamic networks. , 1998, Sleep research online : SRO.

[62]  Ilonka Manshanden,et al.  A MEG study of sleep , 2000, Brain Research.

[63]  J. Hobson,et al.  Visual discrimination learning requires sleep after training , 2000, Nature Neuroscience.

[64]  M. Massimini,et al.  Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. , 2001, Journal of neurophysiology.

[65]  M. Steriade,et al.  Natural waking and sleep states: a view from inside neocortical neurons. , 2001, Journal of neurophysiology.

[66]  Maxim Bazhenov,et al.  Short‐ and medium‐term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo , 2002, The Journal of physiology.

[67]  J. Born,et al.  Learning-Dependent Increases in Sleep Spindle Density , 2002, The Journal of Neuroscience.

[68]  J. Born,et al.  Grouping of Spindle Activity during Slow Oscillations in Human Non-Rapid Eye Movement Sleep , 2002, The Journal of Neuroscience.

[69]  M. Steriade The corticothalamic system in sleep. , 2003, Frontiers in bioscience : a journal and virtual library.

[70]  M. Steriade,et al.  Neuronal Plasticity in Thalamocortical Networks during Sleep and Waking Oscillations , 2003, Neuron.

[71]  Marcello Massimini,et al.  EEG Slow (∼1 Hz) Waves Are Associated With Nonstationarity of Thalamo-Cortical Sensory Processing in the Sleeping Human , 2003 .

[72]  A. Beaudet,et al.  Retrograde labeling of neurons in the brain stem following injections of [3H]choline into the forebrain of the rat , 2004, Experimental Brain Research.

[73]  M. Deschenes,et al.  Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat , 1988, Experimental Brain Research.

[74]  M. Steriade,et al.  Bulbo-thalamic neurons related to thalamocortical activation processes during paradoxical sleep , 2004, Experimental Brain Research.

[75]  O. Pompeiano,et al.  Presynaptic and postsynaptic inhibition on transmission of cutaneous afferent volleys through the cuneate nucleus during sleep , 1966, Experientia.