Motion analysis of a spherical mobile robot

A path planning algorithm for a spherical mobile robot rolling on a plane is presented in this paper. The robot is actuated by two internal rotors that are fixed to the shafts of two motors. These are in turn mounted on the spherical shell in mutually orthogonal directions. The system is nonholonomic due to the nonintegrable nature of the rolling constraints. Further, the system cannot be converted into a chained form, and neither is it nilpotent nor differentially flat. So existing techniques of nonholonomic path planning cannot be applied directly to the system. The approach presented here uses simple geometrical notions and provides numerically efficient and intuitive solutions. We also present the dynamic model and derive motor torques for execution of the algorithm. Along the proposed paths, we achieve dynamic decoupling of the variables making the algorithm more suitable for practical applications.

[1]  Zexiang Li,et al.  Motion of two rigid bodies with rolling constraint , 1990, IEEE Trans. Robotics Autom..

[2]  Benoît Raucent,et al.  ROLLMOBS, a new drive system for omnimobile robots , 2001, Robotica.

[3]  Hagen Schempf,et al.  Cyclops: miniature robotic reconnaissance system , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[5]  R. Mukherjee,et al.  Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem , 2002 .

[6]  J. Canny,et al.  Nonholonomic Motion Planning , 1992 .

[7]  L. Dai,et al.  Non-holonomic Kinematics and the Role of Elliptic Functions in Constructive Controllability , 1993 .

[8]  Perinkulam S. Krishnaprasad,et al.  Lie-Poisson structures, dual-spin spacecraft and asymptotic stability , 1985 .

[9]  Yan Wang,et al.  Motion control of a spherical mobile robot , 1996, Proceedings of 4th IEEE International Workshop on Advanced Motion Control - AMC '96 - MIE.

[10]  Gerardo Lafferriere,et al.  A Differential Geometric Approach to Motion Planning , 1993 .

[11]  Antonio Bicchi,et al.  Introducing the "SPHERICLE": an experimental testbed for research and teaching in nonholonomy , 1997, Proceedings of International Conference on Robotics and Automation.

[12]  Sunil K. Agrawal,et al.  Spherical rolling robot: a design and motion planning studies , 2000, IEEE Trans. Robotics Autom..

[13]  Jean Lévine,et al.  On Motion Planning for Robotic Manipulation with Permanent Rolling Contacts , 2002, Int. J. Robotics Res..

[14]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[15]  S. Sastry,et al.  Nonholonomic motion planning: steering using sinusoids , 1993, IEEE Trans. Autom. Control..

[16]  Dominic Létourneau,et al.  Autonomous spherical mobile robot for child-development studies , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[17]  Werner Schiehlen,et al.  A Review of: Dynamics of Multibody Systems R. E. ROBERSON and R. SCHWERTASSEK Berlin/ …: Springer-Verlag 1988 , 1990 .

[18]  Tomi Ylikorpi,et al.  Ball-Shaped Robots: An Historical Overview and Recent Developments at TKK , 2005, FSR.

[19]  Rhodri H. Armour,et al.  Rolling in nature and robotics: A review , 2006 .

[20]  Mirosław Galicki,et al.  Nonholonomic Motion Planning of Mobile Robots , 2009 .

[21]  Antonio Bicchi,et al.  Planning motions of rolling surfaces , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[22]  Mark A. Minor,et al.  Simple motion planning strategies for spherobot: a spherical mobile robot , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[23]  Benoît Raucent,et al.  ROLLMOBS, a new universal wheel concept , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[24]  Ronald L. Huston,et al.  Dynamics of Multibody Systems , 1988 .

[25]  Tuanjie Li,et al.  Approaches to Motion Planning for a Spherical Robot Based on Differential Geometric Control Theory , 2006, 2006 6th World Congress on Intelligent Control and Automation.

[26]  Walter J. Riker A Review of J , 2010 .

[27]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[28]  Velimir Jurdjevic The geometry of the plate-ball problem , 1993 .

[29]  François Michaud,et al.  Roball, the Rolling Robot , 2002, Auton. Robots.