iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova

Multiple images of a type Ia supernova General relativity indicates that any sufficiently massive object bends the path of light passing by it. This effect is known as gravitational lensing. Goobar et al. have identified a supernova that is strongly lensed by a foreground galaxy, causing it to be highly magnified and splitting the light into four separate images. What is more, it is a type Ia supernova, a well-studied variety with reliable properties that can be used to constrain models of the lensing. This distinctive object will enable cosmological measurements and can be used to probe the distribution of mass in the foreground galaxy. Science, this issue p. 291 Strong gravitational lensing of a type Ia supernova produces high magnification and multiple images. We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy.

[1]  S. Mao,et al.  Interpretation of microlensing events in Q2237 + 0305 , 1994 .

[2]  SNOC: A Monte-Carlo simulation package for high-z supernova observations , 2002, astro-ph/0206409.

[3]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[4]  S. Smartt,et al.  PS1-10afx AT z = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA , 2013, 1302.0009.

[5]  Bernard Muschielok,et al.  The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.

[6]  Umaa Rebbapragada,et al.  Time-domain Surveys and Data Shift: Case Study at the intermediate Palomar Transient Factory , 2015 .

[7]  Lin Yan,et al.  The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory , 2016, 1608.01733.

[8]  J. Sérsic,et al.  Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .

[9]  Andreas Quirrenbach,et al.  OSIRIS: A diffraction limited integral field spectrograph for Keck , 2006 .

[10]  M. Bartelmann,et al.  Isothermal elliptical gravitational lens models. , 1994 .

[11]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[12]  Sagi Ben-Ami,et al.  The SED Machine: a dedicated transient IFU spectrograph , 2012, Other Conferences.

[13]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[14]  S. More,et al.  EXTRAORDINARY MAGNIFICATION OF THE ORDINARY TYPE Ia SUPERNOVA PS1-10afx , 2013, 1302.2785.

[15]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[16]  R. Tripp A TWO-PARAMETER LUMINOSITY CORRECTION FOR TYPE IA SUPERNOVAE , 1998 .

[17]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[18]  P. Jetzer Gravitational Microlensing , 1999, Naturwissenschaften.

[19]  P. E. Nugent,et al.  PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.

[20]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[21]  Bruno Leibundgut,et al.  Supernova Cosmology: Legacy and Future , 2011, 1102.1431.

[22]  Yi Cao,et al.  Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline , 2016, 1608.01006.

[23]  G. Meylan,et al.  TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.

[24]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[25]  W. Freudling,et al.  Automated data reduction workflows for astronomy , 2013, 1311.5411.

[26]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .

[27]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[28]  S. More,et al.  Detection of the Gravitational Lens Magnifying a Type Ia Supernova , 2014, Science.

[29]  Masamune Oguri,et al.  Gravitational lens time delays for distant supernovae: breaking the degeneracy between radial mass profiles and the Hubble constant , 2002, astro-ph/0211499.

[30]  P. Schneider,et al.  Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing , 2013, 1306.0901.

[31]  K. Chae The Cosmic Lens All‐Sky Survey: statistical strong lensing, cosmological parameters, and global properties of galaxy populations , 2002, astro-ph/0211244.

[32]  C. Keeton A catalog of mass models for gravitational lensing , 2001, astro-ph/0102341.

[33]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[34]  Gravitational lensing of type Ia supernovae by galaxy clusters , 1997, astro-ph/9708120.

[35]  E. Ofek,et al.  The Palomar Transient Factory photometric catalog 1.0 , 2012, 1206.1064.

[36]  C. Keeton Computational Methods for Gravitational Lensing , 2001, astro-ph/0102340.

[37]  C. Tao,et al.  Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory , 2013, 1302.1292.

[38]  D. Bartuska Legacy and future. , 1992, Pennsylvania medicine.

[39]  I. Shapiro,et al.  On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A,B , 1985 .

[40]  Paolo Conconi,et al.  Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .

[41]  P. Schechter,et al.  A CALIBRATION OF THE STELLAR MASS FUNDAMENTAL PLANE AT z ∼ 0.5 USING THE MICRO-LENSING-INDUCED FLUX RATIO ANOMALIES OF MACRO-LENSED QUASARS,, , 2014, 1405.0038.

[42]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[43]  M. Sullivan,et al.  Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm , 2015, 1504.02101.

[44]  S. Refsdal On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .

[45]  Cosmological parameters from lensed supernovae , 2002, astro-ph/0207139.

[46]  R. Kayser,et al.  Detectability of gravitational microlensing in the quasar QS02237+0305 , 1989, Nature.

[47]  Microlensing of Lensed Supernovae , 2006, astro-ph/0608391.

[48]  A. Fontana,et al.  Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.

[49]  M. Wainwright,et al.  Using machine learning for discovery in synoptic survey imaging data , 2012, 1209.3775.

[50]  K. Maguire,et al.  Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙ , 2013, 1305.2356.

[51]  P. Nugent,et al.  HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE , 2016, 1611.09459.

[52]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[53]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.