iPTF16geu: A multiply imaged, gravitationally lensed type Ia supernova
暂无分享,去创建一个
Adam A. Miller | E. O. Ofek | P. E. Nugent | O. Yaron | A. Brandeker | S. R. Kulkarni | L. Hangard | A. Cooray | C. Fremling | T. Petrushevska | J. Sollerman | M. Kasliwal | F. Taddia | E. Mörtsell | T. Kupfer | J. Neill | E. Ofek | M. Sullivan | J. Sollerman | P. Nugent | M. Kasliwal | A. Goobar | R. Lunnan | C. Steidel | A. Miller | Y. Cao | N. Blagorodnova | R. Ferretti | C. Fremling | F. Masci | F. Taddia | Yi Cao | J. Johansson | R. Amanullah | R. Walters | N. Blagorodnova | T. Kupfer | R. Quimby | M. Sullivan | O. Yaron | D. Law | L. Yan | E. Mörtsell | H. Nayyeri | A. Cooray | V. Ravi | A. Brandeker | D. Wilson | Dawn K. Wilson | F. Masci | L. Yan | A. A. Miller | Y. Cao | A. Goobar | R. Lunnan | J. D. Neill | M. Sullivan | V. Ravi | R. Walters | C. Steidel | R. Amanullah | S. Papadogiannakis | L. Hangard | J. Johansson | R. Ferretti | S. Papadogiannakis | R. Quimby | H. Nayyeri | T. Petrushevska | D. Law | N. Blagorodnova | D. Wilson | S. Kulkarni | M. Kasliwal | Lin Yan
[1] S. Mao,et al. Interpretation of microlensing events in Q2237 + 0305 , 1994 .
[2] SNOC: A Monte-Carlo simulation package for high-z supernova observations , 2002, astro-ph/0206409.
[3] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[4] S. Smartt,et al. PS1-10afx AT z = 1.388: PAN-STARRS1 DISCOVERY OF A NEW TYPE OF SUPERLUMINOUS SUPERNOVA , 2013, 1302.0009.
[5] Bernard Muschielok,et al. The 4MOST instrument concept overview , 2014, Astronomical Telescopes and Instrumentation.
[6] Umaa Rebbapragada,et al. Time-domain Surveys and Data Shift: Case Study at the intermediate Palomar Transient Factory , 2015 .
[7] Lin Yan,et al. The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory , 2016, 1608.01733.
[8] J. Sérsic,et al. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy , 1963 .
[9] Andreas Quirrenbach,et al. OSIRIS: A diffraction limited integral field spectrograph for Keck , 2006 .
[10] M. Bartelmann,et al. Isothermal elliptical gravitational lens models. , 1994 .
[11] M. Sullivan,et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.
[12] Sagi Ben-Ami,et al. The SED Machine: a dedicated transient IFU spectrograph , 2012, Other Conferences.
[13] A. Gal-yam,et al. WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.
[14] S. More,et al. EXTRAORDINARY MAGNIFICATION OF THE ORDINARY TYPE Ia SUPERNOVA PS1-10afx , 2013, 1302.2785.
[15] M. Sullivan,et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.
[16] R. Tripp. A TWO-PARAMETER LUMINOSITY CORRECTION FOR TYPE IA SUPERNOVAE , 1998 .
[17] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[18] P. Jetzer. Gravitational Microlensing , 1999, Naturwissenschaften.
[19] P. E. Nugent,et al. PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.
[20] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[21] Bruno Leibundgut,et al. Supernova Cosmology: Legacy and Future , 2011, 1102.1431.
[22] Yi Cao,et al. Intermediate Palomar Transient Factory: Realtime Image Subtraction Pipeline , 2016, 1608.01006.
[23] G. Meylan,et al. TWO ACCURATE TIME-DELAY DISTANCES FROM STRONG LENSING: IMPLICATIONS FOR COSMOLOGY , 2012, 1208.6010.
[24] C. Frenk,et al. The Aquarius Project : the subhalos of galactic halos , 2008 .
[25] W. Freudling,et al. Automated data reduction workflows for astronomy , 2013, 1311.5411.
[26] James E. Gunn,et al. AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .
[27] Ucsb,et al. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.
[28] S. More,et al. Detection of the Gravitational Lens Magnifying a Type Ia Supernova , 2014, Science.
[29] Masamune Oguri,et al. Gravitational lens time delays for distant supernovae: breaking the degeneracy between radial mass profiles and the Hubble constant , 2002, astro-ph/0211499.
[30] P. Schneider,et al. Mass-sheet degeneracy, power-law models and external convergence: Impact on the determination of the Hubble constant from gravitational lensing , 2013, 1306.0901.
[31] K. Chae. The Cosmic Lens All‐Sky Survey: statistical strong lensing, cosmological parameters, and global properties of galaxy populations , 2002, astro-ph/0211244.
[32] C. Keeton. A catalog of mass models for gravitational lensing , 2001, astro-ph/0102341.
[33] Hilo,et al. THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.
[34] Gravitational lensing of type Ia supernovae by galaxy clusters , 1997, astro-ph/9708120.
[35] E. Ofek,et al. The Palomar Transient Factory photometric catalog 1.0 , 2012, 1206.1064.
[36] C. Keeton. Computational Methods for Gravitational Lensing , 2001, astro-ph/0102340.
[37] C. Tao,et al. Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory , 2013, 1302.1292.
[38] D. Bartuska. Legacy and future. , 1992, Pennsylvania medicine.
[39] I. Shapiro,et al. On model-dependent bounds on H(0) from gravitational images Application of Q0957 + 561A,B , 1985 .
[40] Paolo Conconi,et al. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series , 2012 .
[41] P. Schechter,et al. A CALIBRATION OF THE STELLAR MASS FUNDAMENTAL PLANE AT z ∼ 0.5 USING THE MICRO-LENSING-INDUCED FLUX RATIO ANOMALIES OF MACRO-LENSED QUASARS,, , 2014, 1405.0038.
[42] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[43] M. Sullivan,et al. Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm , 2015, 1504.02101.
[44] S. Refsdal. On the possibility of determining Hubble's parameter and the masses of galaxies from the gravitational lens effect , 1964 .
[45] Cosmological parameters from lensed supernovae , 2002, astro-ph/0207139.
[46] R. Kayser,et al. Detectability of gravitational microlensing in the quasar QS02237+0305 , 1989, Nature.
[47] Microlensing of Lensed Supernovae , 2006, astro-ph/0608391.
[48] A. Fontana,et al. Multiple images of a highly magnified supernova formed by an early-type cluster galaxy lens , 2014, Science.
[49] M. Wainwright,et al. Using machine learning for discovery in synoptic survey imaging data , 2012, 1209.3775.
[50] K. Maguire,et al. Hubble Space Telescope spectra of the type Ia supernova SN 2011fe: a tail of low-density, high-velocity material with Z < Z⊙ , 2013, 1305.2356.
[51] P. Nugent,et al. HOW TO FIND GRAVITATIONALLY LENSED TYPE Ia SUPERNOVAE , 2016, 1611.09459.
[52] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[53] Durham,et al. The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.