High-Frequency Gravitational Wave Detection via Optical Frequency Modulation

High-frequency gravitational waves can be detected by observing the frequency modulation they impart on photons. We discuss fundamental limitations to this method related to the fact that it is impossible to construct a perfectly rigid detector. We then propose several novel methods to search for O(MHz-GHz) gravitational waves based on the frequency modulation induced in the spectrum of an intense laser beam, by applying optical frequency demodulation techniques, or by using optical atomic clock technology. We find promising sensitivities across a broad frequency range.

[1]  R. D’Agnolo,et al.  Electromagnetic cavities as mechanical bars for gravitational waves , 2023, Physical Review D.

[2]  Dipen Barot,et al.  Optical Phase/Frequency Demodulation Using Polarization-Maintaining Fiber Bragg Gratings , 2022, Journal of Lightwave Technology.

[3]  D. Mateos,et al.  Mega-Hertz Gravitational Waves from Neutron Star Mergers , 2022, 2210.03171.

[4]  V. Domcke,et al.  Novel Search for High-Frequency Gravitational Waves with Low-Mass Axion Haloscopes. , 2022, Physical review letters.

[5]  Gavin W. Morley,et al.  Cold atoms in space: community workshop summary and proposed road-map , 2022, EPJ Quantum Technology.

[6]  R. A. Williams,et al.  Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network , 2022, Nature Communications.

[7]  R. D’Agnolo,et al.  Detecting high-frequency gravitational waves with microwave cavities , 2021, Physical Review D.

[8]  S. Kolkowitz,et al.  Differential clock comparisons with a multiplexed optical lattice clock , 2021, Nature.

[9]  N. Aggarwal,et al.  Searching for New Physics with a Levitated-Sensor-Based Gravitational-Wave Detector. , 2020, Physical review letters.

[10]  R. Reis,et al.  Influence of gravitational waves upon light in the Minkowski background: From null geodesics to interferometry , 2021, Physical Review D.

[11]  S. C. Kim,et al.  Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. , 2021, Physical review letters.

[12]  T. Schumm,et al.  Nuclear clocks for testing fundamental physics , 2020, Quantum Science and Technology.

[13]  J. Steinlechner,et al.  Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies , 2020, 2011.12414.

[14]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2020, Living Reviews in Relativity.

[15]  Y.Fujii,et al.  Overview of KAGRA: Detector design and construction history , 2020, Progress of Theoretical and Experimental Physics.

[16]  J. Soda,et al.  A formalism for magnon gravitational wave detectors , 2020, The European Physical Journal C.

[17]  Dipen Barot,et al.  A Novel Frequency-Modulation (FM) Demodulator for Microwave Photonic Links Based on Polarization-Maintaining Fiber Bragg Grating , 2020, 2020 Optical Fiber Communications Conference and Exhibition (OFC).

[18]  C. Foot,et al.  AION: an atom interferometer observatory and network , 2019, Journal of Cosmology and Astroparticle Physics.

[19]  Achim Peters,et al.  AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space , 2019, Experimental Astronomy.

[20]  Patrizia Tavella,et al.  The 50th Anniversary of the Atomic Second , 2018, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[21]  D. F. Kimball,et al.  Search for New Physics with Atoms and Molecules , 2017, 1710.01833.

[22]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[23]  M. Kasevich,et al.  Mid-band gravitational wave detection with precision atomic sensors , 2017, 1711.02225.

[24]  T. Legero,et al.  1.5 μm lasers with sub 10 mHz linewidth , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[25]  Rainer Weiss,et al.  MHz gravitational wave constraints with decameter Michelson interferometers , 2016, 1611.05560.

[26]  M. Lukin,et al.  Gravitational wave detection with optical lattice atomic clocks , 2016, 1606.01859.

[27]  A. Vutha Optical frequency standards for gravitational wave detection using satellite Doppler velocimetry , 2015, 1501.01870.

[28]  D. Maoz,et al.  Using Atomic Clocks to Detect Gravitational Waves , 2015, 1501.00996.

[29]  S. Klimenko,et al.  Advanced LIGO , 2014, 1411.4547.

[30]  M. Tobar,et al.  Gravitational wave detection with high frequency phonon trapping acoustic cavities , 2014, 1410.2334.

[31]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[32]  M. Rakhmanov Fermi-normal, optical, and wave-synchronous coordinates for spacetime with a plane gravitational wave , 2014, 1409.4648.

[33]  Hidetoshi Katori,et al.  30-km-long optical fiber link at 1397 nm for frequency comparison between distant strontium optical lattice clocks , 2014 .

[34]  V. Dzuba,et al.  Single-ion nuclear clock for metrology at the 19th decimal place. , 2011, Physical review letters.

[35]  Bo Liu,et al.  Review of fiber Bragg grating sensor technology , 2011 .

[36]  A. V. Davydov,et al.  Observation of the gamma resonance of a long-lived 109mAg isomer using a gravitational gamma-ray spectrometer , 2009 .

[37]  J. Canning Fibre gratings and devices for sensors and lasers , 2008 .

[38]  A. V. Davydov,et al.  Initial studies of the gamma resonance of the 109mAg isomer with a gravitational gamma spectrometer , 2008 .

[39]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[40]  M. Dyar,et al.  Mössbauer Spectroscopy of Earth and Planetary Materials , 2006 .

[41]  J. W. Armstrong,et al.  Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking , 2006, Living reviews in relativity.

[42]  S. Siparov A two-level atom in the field of a gravitational wave - on the possibility of parametric resonance , 2004 .

[43]  M. Hare,et al.  Measurement of the positive muon anomalous magnetic moment to 0.7 ppm. , 2002, Physical review letters.

[44]  John W. Armstrong,et al.  Time-delay interferometry for LISA , 2002 .

[45]  H. Brück Cosmology , 1951, Peirce's Pragmatism.

[46]  Tpi Friedrich-Schiller-Universität,et al.  Timing Effects of Gravitational Waves from Localized Sources , 1999 .

[47]  John W. Armstrong,et al.  Spacecraft Doppler Tracking as a Narrow-Band Detector of Gravitational Radiation , 1998 .

[48]  F. Pinto Rydberg atoms as gravitational-wave antennas , 1995 .

[49]  U. R. Fischer Transition probabilities for a Rydberg atom in the field of a gravitational wave , 1994 .

[50]  Boolchand,et al.  Nuclear resonant absorption in long-lived isomeric transitions. , 1992, Physical review. B, Condensed matter.

[51]  G. Hoy,et al.  The Mössbauer effect in109Ag revisited , 1990 .

[52]  G. Hoy,et al.  Some Mössbauer effect considerations in gamma-ray laser development , 1988 .

[53]  T. Leen,et al.  Remote quantum mechanical detection of gravitational radiation , 1983 .

[54]  L. Parker,et al.  One-electron atom as a probe of space-time curvature , 1980 .

[55]  W. Press,et al.  Gravitational waves. , 1980, Science.

[56]  U. Gonser,et al.  A NEW ATTEMPT TO OBSERVE THE RESONANCE IN Ag109 , 1979 .

[57]  Hugo D. Wahlquist,et al.  Response of Doppler spacecraft tracking to gravitational radiation , 1975 .

[58]  W. Kaufmann,et al.  Redshift Fluctuations arising from Gravitational Waves , 1970, Nature.

[59]  C. Coulter,et al.  THE MOSSBAUER EFFECT. , 1966 .

[60]  Rudolf L. Mössbauer,et al.  Kernresonanzfluoreszenz von Gammastrahlung in Ir191 , 1958 .