An efficient SPDE approach for El Niño

We consider the numerical approximation of stochastic partial differential equations (SPDEs) based models for a quasi-periodic climate pattern in the tropical Pacific Ocean known as El Ni\~no phenomenon. We show that for these models the mean and the covariance are given by a deterministic partial differential equation and by an operator differential equation, respectively. In this context we provide a numerical framework to approximate these parameters directly. We compare this method to stochastic differential equations and SPDEs based models from the literature solved by Taylor methods and stochastic Galerkin methods, respectively. Numerical results for different scenarios taking as a reference measured data of the years 2014 and 2015 (last Ni\~no event) validate the efficiency of our approach.

[1]  Thilo Penzl LYAPACK Users Guide - A MATLAB Toolbox for Large Lyapunov and Riccati . . . , 2000 .

[2]  Habib N. Najm,et al.  Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes , 2005, SIAM J. Sci. Comput..

[3]  Roger Temam,et al.  Accurate Integration of Stochastic Climate Models with Application to El Nino , 2004 .

[4]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[5]  T. Damm Rational Matrix Equations in Stochastic Control , 2004 .

[6]  Hermann Mena,et al.  Numerical solution of the finite horizon stochastic linear quadratic control problem , 2017, Numer. Linear Algebra Appl..

[7]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[8]  Roger Temam,et al.  Analysis of stochastic numerical schemes for the evolution equations of geophysics , 2003, Appl. Math. Lett..

[9]  J. Case A Simple Predictive Model for El Niño , 2009 .

[10]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[11]  Stephen D. Shank,et al.  Efficient low-rank solution of generalized Lyapunov equations , 2016, Numerische Mathematik.

[12]  Tony Stillfjord,et al.  Low-Rank Second-Order Splitting of Large-Scale Differential Riccati Equations , 2015, IEEE Transactions on Automatic Control.

[13]  M. Newman,et al.  How Important Is Air–Sea Coupling in ENSO and MJO Evolution? , 2009 .

[14]  Peter Benner,et al.  Low rank methods for a class of generalized Lyapunov equations and related issues , 2013, Numerische Mathematik.

[15]  Tony Stillfjord,et al.  Adaptive high-order splitting schemes for large-scale differential Riccati equations , 2016, Numerical Algorithms.

[16]  M. Flügel,et al.  The Role of Stochastic Forcing in Modulating ENSO Predictability , 2004 .

[17]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[18]  Chiara Piazzola,et al.  Numerical low-rank approximation of matrix differential equations , 2017, J. Comput. Appl. Math..

[19]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[20]  Cécile Penland,et al.  Random Forcing and Forecasting Using Principal Oscillation Pattern Analysis , 1989 .

[21]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[22]  Prashant D. Sardeshmukh,et al.  The Optimal Growth of Tropical Sea Surface Temperature Anomalies , 1995 .

[23]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[24]  Hermann Mena,et al.  On the benefits of the LDLT factorization for large-scale differential matrix equation solvers , 2015 .

[25]  Bernt Øksendal,et al.  Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach , 1996 .

[26]  Peter Benner,et al.  Numerical solution of the infinite-dimensional LQR problem and the associated Riccati differential equations , 2018, J. Num. Math..

[27]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .