The role of mesh generation, adaptation, and refinement on the computation of flows featuring strong shocks

Within a continuum framework, flows featuring shock waves can be modelled by means of either shock capturing or shock fitting. Shock-capturing codes are algorithmically simple, but are plagued by a number of numerical troubles, particularly evident when shocks are strong and the grids unstructured. On the other hand, shock-fitting algorithms on structured grids allow to accurately compute solutions on coarse meshes, but tend to be algorithmically complex. We show how recent advances in computational mesh generation allow to relieve some of the difficulties encountered by shock capturing and contribute towards making shock fitting on unstructured meshes a versatile technique.

[1]  Pradeep Singh Rawat,et al.  On high-order shock-fitting and front-tracking schemes for numerical simulation of shock-disturbance interactions , 2010, J. Comput. Phys..

[2]  Pascal Frey,et al.  YAMS A fully Automatic Adaptive Isotropic Surface Remeshing Procedure , 2001 .

[3]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[4]  V. Dolejší Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes , 1998 .

[5]  Howard W Emmons Flow of a compressible fluid past a symmetrical airfoil in a wind tunnel and in free air , 1948 .

[6]  Peter A. Gnoffo,et al.  Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids , 2010 .

[7]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[8]  Renato Paciorri,et al.  A shock-fitting technique for 2D unstructured grids , 2009 .

[9]  Domenic D'Ambrosio,et al.  Upwind methods and carbuncle phenomenon , 1998 .

[10]  Ambady Suresh,et al.  Short Note: Interaction of a shock with a density disturbance via shock fitting , 2005 .

[11]  Peter A. Gnoffo,et al.  Computational Aerothermodynamic Simulation Issues on Unstructured Grids , 2004 .

[12]  J. Délery,et al.  Type III and type IV shock/shock interferences: theoretical and experimental aspects , 2003 .

[13]  Pramod K. Subbareddy,et al.  Unstructured grid approaches for accurate aeroheating simulations , 2007 .

[14]  Richard A. Thompson,et al.  A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K , 1989 .

[15]  Christopher J. Roy,et al.  Veri cation and Validation for Laminar Hypersonic Flow elds , Part 2 : Validation , 2003 .

[16]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[17]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[18]  Aldo Bonfiglioli,et al.  Numerical simulation of hypersonic flows past three-dimensional blunt bodies through a unstructured shock-fitting solver , 2011 .

[19]  Manuel D. Salas,et al.  A Shock-Fitting Primer , 2009 .

[20]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[21]  M. D. Salas,et al.  Shock Fitting Method for Complicated Two-Dimensional Supersonic Flows , 1976 .

[22]  M. D. Salas,et al.  A Brief History of Shock-Fitting , 2011 .

[23]  Philip L. Roe,et al.  On carbuncles and other excrescences , 2005 .

[24]  Kwan-Liu Ma,et al.  3D shock wave visualization on unstructured grids , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[25]  Peter A. Gnoffo,et al.  Simulation of Stagnation Region Heating in Hypersonic Flow on Tetrahedral Grids , 2007 .

[26]  Mikhail S. Ivanov,et al.  Computation of weak steady shock reflections by means of an unstructured shock-fitting solver , 2010 .

[27]  Sergio Pirozzoli,et al.  Numerical Methods for High-Speed Flows , 2011 .

[28]  Renato Paciorri,et al.  Shock interaction computations on unstructured, two-dimensional grids using a shock-fitting technique , 2011, J. Comput. Phys..

[29]  Aldo Bonfiglioli,et al.  Fluctuation Splitting Schemes for the Compressible and Incompressible Euler and Navier-Stokes Equations , 2000 .

[30]  C. Park,et al.  On convergence of computation of chemically reacting flows , 1985 .

[31]  Aldo Bonfiglioli,et al.  Parallel Unstructured Three-Dimensional Turbulent Flow Analyses Using Efficiently Preconditioned Newton-Krylov Solvers , 2009 .

[32]  Peter A. Gnoffo,et al.  Multi-Dimensional, Inviscid Flux Reconstruction for Simulation of Hypersonic Heating on Tetrahedral Grids , 2009 .

[33]  D. Darmofal,et al.  Review of Output-Based Error Estimation and Mesh Adaptation in Computational Fluid Dynamics , 2011 .

[34]  Hang Si,et al.  TetGen: A quality tetrahedral mesh generator and a 3D Delaunay triangulator (Version 1.5 --- User's Manual) , 2013 .

[35]  Renato Paciorri,et al.  An unstructured, three-dimensional, shock-fitting solver for hypersonic flows , 2013 .

[36]  Xiaolin Zhong,et al.  Spurious Numerical Oscillations in Numerical Simulation of Supersonic Flows Using Shock Capturing Schemes , 1999 .

[37]  Edney ANOMALOUS HEAT TRANSFER AND PRESSURE DISTRIBUTIONS ON BLUNT BODIES AT HYPERSONIC SPEEDS IN THE PRESENCE OF AN IMPINGING SHOCK. , 1968 .

[38]  Philip L. Roe,et al.  A frontal approach for internal node generation in Delaunay triangulations , 1993 .

[39]  Gino Moretti,et al.  Thirty-six years of shock fitting , 2002 .

[40]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[41]  Andrea Di Mascio,et al.  Analysis of the Flow Past a Fully Appended Hull with Propellers by Computational and Experimental Fluid Dynamics , 2011 .

[42]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[43]  S. Osher,et al.  Regular ArticleUniformly High Order Accurate Essentially Non-oscillatory Schemes, III , 1997 .

[44]  H. Emmons,et al.  The numerical solution of compressible fluid flow problems , 1944 .

[45]  W. Henshaw,et al.  Composite overlapping meshes for the solution of partial differential equations , 1990 .

[46]  Gino Moretti,et al.  COMPUTATION OF FLOWS WITH SHOCKS , 1987 .

[47]  M. Carpenter,et al.  Accuracy of Shock Capturing in Two Spatial Dimensions , 1999 .

[48]  Dinesh Manocha,et al.  Applied Computational Geometry Towards Geometric Engineering , 1996, Lecture Notes in Computer Science.

[49]  Francesco Nasuti,et al.  Analysis of unsteady supersonic viscous flows by a shock-fitting technique , 1996 .

[50]  D. Bonhaus,et al.  A higher order accurate finite element method for viscous compressible flows , 1999 .

[51]  Jean-Marc Moschetta,et al.  Shock wave instability and the carbuncle phenomenon: same intrinsic origin? , 2000, Journal of Fluid Mechanics.

[52]  J. Benek,et al.  A flexible grid embedding technique with application to the Euler equations , 1983 .

[53]  Z. Wang High-order methods for the Euler and Navier–Stokes equations on unstructured grids , 2007 .

[54]  M. Onofri,et al.  Viscous and Inviscid Vortex Generation During Startup of Rocket Nozzles , 1998 .