Linking objective and subjective modeling in engineering design through arc-elastic dominance

Engineering design in mechanics is a complex activity taking into account both objective modeling processes derived from physical analysis and designers' subjective reasoning. This paper introduces arc-elastic dominance as a suitable concept for ranking design solutions according to a combination of objective and subjective models. Objective models lead to the aggregation of information derived from physics, economics or eco-environmental analysis into a performance indicator. Subjective models result in a confidence indicator for the solutions' feasibility. Arc-elastic dominant design solutions achieve an optimal compromise between gain in performance and degradation in confidence. Due to the definition of arc-elasticity, this compromise value is expressive and easy for designers to interpret despite the difference in the nature of the objective and subjective models. From the investigation of arc-elasticity mathematical properties, a filtering algorithm of Pareto-efficient solutions is proposed and illustrated through a design knowledge modeling framework. This framework notably takes into account Harrington's desirability functions and Derringer's aggregation method. It is carried out through the re-design of a geothermal air conditioning system.

[1]  Erik K. Antonsson,et al.  Aggregation functions for engineering design trade-offs , 1995, Fuzzy Sets Syst..

[2]  Philippe Dépincé,et al.  Multi-objective genetic algorithms: A way to improve the convergence rate , 2006, Eng. Appl. Artif. Intell..

[3]  Bart Jourquin,et al.  Freight transportation demand elasticities: a geographic multimodal transportation network analysis , 2001 .

[4]  A. Marshall Principles of Economics , .

[5]  W. Rohsenow,et al.  Handbook of Heat Transfer , 1998 .

[6]  Erik K. Antonsson,et al.  Fuzzy fitness functions applied to engineering design problems , 2005, Eur. J. Oper. Res..

[7]  Hector J. Levesque,et al.  Knowledge Representation and Reasoning , 2004 .

[8]  H. Simon,et al.  Models of Bounded Rationality: Empirically Grounded Economic Reason , 1997 .

[9]  J. Brimson,et al.  Cost Management for Today’s Advanced Manufacturing , 1988 .

[10]  Patrice Perny,et al.  Multicriteria filtering methods based onconcordance and non-discordance principles , 1998, Ann. Oper. Res..

[11]  Zissimos P. Mourelatos,et al.  Improving Robust Design with Preference Aggregation Methods , 2004 .

[12]  Ching-Chang Wong,et al.  Rule extraction for fuzzy modeling , 1997, Fuzzy Sets Syst..

[13]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[14]  Jayanta Basak,et al.  Methods of case adaptation: A survey , 2005, Int. J. Intell. Syst..

[15]  Jayanta Basak,et al.  Methods of case adaptation: A survey: Research Articles , 2005 .

[16]  Mehrdad Tamiz,et al.  Goal programming for decision making: An overview of the current state-of-the-art , 1998, Eur. J. Oper. Res..

[17]  Yucheng Dong,et al.  On consistency measures of linguistic preference relations , 2008, Eur. J. Oper. Res..

[18]  Thomas L. Saaty Fundamentals of decision making and priority theory , 2000 .

[19]  Xavier Blasco Ferragud,et al.  Integrated multiobjective optimization and a priori preferences using genetic algorithms , 2008, Inf. Sci..

[20]  Om Prakash Yadav,et al.  A fuzzy-AHP approach to prioritization of CS attributes in target planning for automotive product development , 2010, Expert Syst. Appl..

[21]  Patrick Sebastian,et al.  Multi-objective optimization of the design of two-stage flash evaporators: Part 2. Multi-objective optimization , 2010 .

[22]  Seyed Taghi Akhavan Niaki,et al.  Multi-response simulation optimization using genetic algorithm within desirability function framework , 2006, Appl. Math. Comput..

[23]  G. Derringer,et al.  Simultaneous Optimization of Several Response Variables , 1980 .

[24]  Ian D. Bishop,et al.  Linking objective and subjective modelling for landuse decision-making , 1998 .

[25]  Yakov Ben-Haim,et al.  Robust rationality and decisions under severe uncertainty , 2000, J. Frankl. Inst..

[26]  Ralph L. Webb,et al.  HEAT TRANSFER AND FRICTION CORRELATIONS FOR PLATE FINNED-TUBE HEAT EXCHANGERS HAVING PLAIN FINS , 1986 .

[27]  A. J. Dentsoras,et al.  Soft computing in engineering design - A review , 2008, Adv. Eng. Informatics.

[28]  James Odeck,et al.  Travel demand elasticities and users attitudes: A case study of Norwegian toll projects , 2008 .

[29]  John E. Mottershead,et al.  A review of robust optimal design and its application in dynamics , 2005 .

[30]  Kuo-Chen Hung,et al.  A decision support system for engineering design based on an enhanced fuzzy MCDM approach , 2010, Expert Syst. Appl..

[31]  Juite Wang,et al.  Ranking engineering design concepts using a fuzzy outranking preference model , 2001, Fuzzy Sets Syst..

[32]  Augustin M. Cournot Cournot, Antoine Augustin: Recherches sur les principes mathématiques de la théorie des richesses , 2019, Die 100 wichtigsten Werke der Ökonomie.

[33]  Thomas L. Saaty,et al.  Rank from comparisons and from ratings in the analytic hierarchy/network processes , 2006, Eur. J. Oper. Res..

[34]  Crispin Hales,et al.  Engineering design: a systematic approach , 1989 .

[35]  Jean-Marc Martel,et al.  Incorporating the Decision-maker's Preferences in the Goal-programming Model , 1990 .

[36]  Carlos A. Coello Coello,et al.  g-dominance: Reference point based dominance for multiobjective metaheuristics , 2009, Eur. J. Oper. Res..

[37]  C George,et al.  A Balancing Act: Optimizing a Product's Properties , 1994 .

[38]  Xavier Drèze,et al.  Measurement of online visibility and its impact on Internet traffic , 2004 .

[39]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[40]  William T. Scherer,et al.  "The desirability function: underlying assumptions and application implications" , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[41]  In-Jun Jeong,et al.  An interactive desirability function method to multiresponse optimization , 2009, Eur. J. Oper. Res..

[42]  P. Sébastian,et al.  Formalization and qualification of models adapted to preliminary design , 2010 .