An ADER-type scheme for a class of equations arising from the water-wave theory

Abstract In this work we propose a numerical strategy to solve a family of partial differential equations arising from the water-wave theory. These problems may contain four terms; a source which is an algebraic function of the solution, a convective part involving first order spatial derivatives of the solution, a diffusive part involving second order spatial derivatives and the transient part. Unlike partial differential equations of hyperbolic or parabolic type, where the transient part is the time derivative of the solution, here the transient part can contain mixed time and space derivatives. In [Zambra et al. International Journal for Numerical Methods in Engineering 89(2):227-240, 2012], the authors proposed a globally implicit strategy to solve the Richards equation. In that case, transient terms consisted of algebraic expressions of the solution. Motivated by this work, we propose a one-step finite volume method to deal with problems in which transient terms are differential operators. Here, a locally implicit formulation is investigated, which is based on the ADER philosophy. The scheme is divided in three steps: i) a polynomial reconstruction of the data; ii) solutions to Generalized Riemann Problems (GRP); iii) the solution of differential problems. Note that steps i) and ii), are those of conventional ADER schemes for conservation laws. Advantages of the present approach include the possibility to construct high-order approximations in both space and time, for which existing methodologies for hyperbolic problems can be applied. The differential problems associated to the transient term can be non-linear and numerical strategies can be adopted to deal wit it. Convergence of the scheme is proved rigorously and an empirical convergence rates assessment is carried out in order to illustrate the high space and time accuracy of the present scheme.

[1]  Eleuterio F. Toro,et al.  ADER schemes for the shallow water equations in channel with irregular bottom elevation , 2006, J. Comput. Phys..

[2]  Eleuterio F. Toro,et al.  Advection-Diffusion-Reaction Equations: Hyperbolization and High-Order ADER Discretizations , 2014, SIAM J. Sci. Comput..

[3]  E. Barthélemy,et al.  Nonlinear Shallow Water Theories for Coastal Waves , 2004 .

[4]  Michael Dumbser,et al.  Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms , 2012, J. Comput. Phys..

[5]  D. Lannes,et al.  A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations , 2015, J. Comput. Phys..

[6]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[7]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[8]  J. Bona,et al.  Numerical solution of Boussinesq systems of KdV-KdV type: II. Evolution of radiating solitary waves , 2008 .

[9]  V. A. Dougalis,et al.  Error estimates for Galerkin approximations of the "classical" Boussinesq system , 2013, Math. Comput..

[10]  Michael Dumbser,et al.  Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers , 2013, J. Comput. Phys..

[11]  Lucas O Müller,et al.  A global multiscale mathematical model for the human circulation with emphasis on the venous system , 2014, International journal for numerical methods in biomedical engineering.

[12]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[13]  Maojun Li,et al.  High order well-balanced CDG-FE methods for shallow water waves by a Green-Naghdi model , 2014, J. Comput. Phys..

[14]  Michael Dumbser,et al.  High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.

[15]  Mario Ricchiuto,et al.  Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries , 2013, J. Comput. Phys..

[16]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[17]  Raul Borsche,et al.  ADER schemes and high order coupling on networks of hyperbolic conservation laws , 2014, J. Comput. Phys..

[18]  M. Dumbser,et al.  High order space–time adaptive ADER-WENO finite volume schemes for non-conservative hyperbolic systems , 2013, 1304.5408.

[19]  D. Lannes,et al.  Numerical Simulation of Strongly Nonlinear and Dispersive Waves Using a Green–Naghdi Model , 2010, J. Sci. Comput..

[20]  Joseph Falcovitz,et al.  Generalized Riemann Problems in Computational Fluid Dynamics , 2003 .

[21]  Sergey L. Gavrilyuk,et al.  A numerical scheme for the Green-Naghdi model , 2010, J. Comput. Phys..

[22]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[23]  Modelling of 2-D extended Boussinesq equations using a hybrid numerical scheme , 2014 .

[24]  Eleuterio F. Toro,et al.  Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry , 2008, J. Comput. Phys..

[25]  Eleuterio F. Toro,et al.  Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws , 2015, J. Comput. Phys..

[26]  F. Smith,et al.  Conservative, high-order numerical schemes for the generalized Korteweg—de Vries equation , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[27]  V. A. Dougalis,et al.  Numerical solution of the 'classical' Boussinesq system , 2012, Math. Comput. Simul..

[28]  G. A. Omel’yanov,et al.  Interaction of solitary waves for the generalized KdV equation , 2012 .

[29]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for aeroacoustics , 2005 .

[30]  Argiris I. Delis,et al.  Numerical treatment of wave breaking on unstructured finite volume approximations for extended Boussinesq-type equations , 2014, J. Comput. Phys..

[31]  P. LeFloch,et al.  Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .

[32]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[33]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[34]  P. LeFloch Hyperbolic Systems of Conservation Laws , 2002 .

[35]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[36]  V. A. Dougalis,et al.  Numerical solution of KdV-KdV systems of Boussinesq equations: I. The numerical scheme and generalized solitary waves , 2007, Math. Comput. Simul..

[37]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[38]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[39]  Martin Käser,et al.  Adaptive Methods for the Numerical Simulation of Transport Processes , 2003 .

[40]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[41]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[42]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[43]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  David Lannes,et al.  The Water Waves Problem: Mathematical Analysis and Asymptotics , 2013 .

[45]  Eleuterio F. Toro,et al.  ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions , 2005 .

[46]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[47]  O. Nwogu Alternative form of Boussinesq equations for nearshore wave propagation , 1993 .

[48]  Henrik Kalisch,et al.  A boundary value problem for the KdV equation: Comparison of finite-difference and Chebyshev methods , 2009, Math. Comput. Simul..

[49]  D. C. Antonopoulos,et al.  Numerical solution of Boussinesq systems of the Bona--Smith family , 2010 .

[50]  Eleuterio F. Toro,et al.  Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes , 2014, J. Comput. Phys..

[51]  Eleuterio F. Toro,et al.  Solvers for the high-order Riemann problem for hyperbolic balance laws , 2008, J. Comput. Phys..

[52]  Michael Dumbser,et al.  A novel numerical method of high‐order accuracy for flow in unsaturated porous media , 2012 .

[53]  Denys Dutykh,et al.  Finite volume schemes for dispersive wave propagation and runup , 2010, J. Comput. Phys..

[54]  Lucas O. Müller,et al.  Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes , 2014, J. Comput. Phys..

[55]  E. Toro,et al.  Exact solution of some hyperbolic systems with source terms , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[56]  E. Toro,et al.  An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes - V. Local time stepping and p-adaptivity , 2007 .

[57]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[58]  Michael Dumbser,et al.  A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws , 2014 .

[59]  J. Bona,et al.  Fully discrete galerkin methods for the korteweg-de vries equation☆ , 1986 .

[60]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[61]  Jerry L. Bona,et al.  Comparison of model equations for small-amplitude long waves , 1999 .

[62]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[63]  Eleuterio F. Toro,et al.  ARBITRARILY ACCURATE NON-OSCILLATORY SCHEMES FOR A NONLINEAR CONSERVATION LAW , 2002 .

[64]  David Lannes,et al.  Well-posedness of the water-waves equations , 2005 .

[65]  P. M. Naghdi,et al.  A derivation of equations for wave propagation in water of variable depth , 1976, Journal of Fluid Mechanics.

[66]  H. van der Ven,et al.  Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. Part II. Efficient flux quadrature , 2002 .

[67]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[68]  D. Lannes,et al.  A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model , 2010, J. Comput. Phys..

[69]  J. V. D. Vegt,et al.  Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .