T2 restoration and noise suppression of hybrid MR images using Wiener and linear prediction techniques

The authors address the problem of enhancing magnetic resonance (MR) images degraded by T2 effects and measurement noise in hybrid imaging process. Wiener filtering and the linear prediction (LP) techniques are utilized to perform global and local T2 corrections respectively. The effectiveness of this combined technique in correcting T2 distortions and reducing measurement noise is demonstrated.<<ETX>>

[1]  J C Gore,et al.  The Loss of Small Objects in Variable TE Imaging: Implications for FSE, RARE, and EPI , 1992, Magnetic resonance in medicine.

[2]  D M Kramer,et al.  Analysis of hybrid imaging techniques , 1992, Magnetic resonance in medicine.

[3]  L. Scharf,et al.  Statistical Signal Processing: Detection, Estimation, and Time Series Analysis , 1991 .

[4]  L. Kaufman,et al.  Technology Requirements for Magnetic Resonance Imaging Systems , 1991, Proceedings Technology Requirements for Biomedical Imaging.

[5]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[6]  Joel F Martin,et al.  Modified linear prediction modeling in magnetic resonance imaging , 1989 .

[7]  J Hennig,et al.  Clinical applications and methodological developments of the RARE technique. , 1988, Magnetic resonance imaging.

[8]  J Hennig,et al.  RARE imaging: A fast imaging method for clinical MR , 1986, Magnetic resonance in medicine.

[9]  D. Feinberg,et al.  Halving MR imaging time by conjugation: demonstration at 3.5 kG. , 1986, Radiology.

[10]  E M Haacke,et al.  Reduction of MR imaging time by the hybrid fast-scan technique. , 1986, Radiology.

[11]  R. Mark Henkelman,et al.  Truncation Artifacts in Magnetic Resonance Imaging , 1985, Magnetic resonance in medicine.

[12]  C. M. J. Van Uijen,et al.  Fast fourier imaging , 1985, Magnetic resonance in medicine.

[13]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[14]  Peter G. Morris,et al.  Nmr Imaging in Biomedicine , 1982 .

[15]  M. Hayes The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform , 1982 .

[16]  J. Makhoul,et al.  Linear prediction: A tutorial review , 1975, Proceedings of the IEEE.

[17]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[18]  Tenkasi V. Ramabadran,et al.  Near-lossless compression of medical images through entropy-coded DPCM , 1994, IEEE Trans. Medical Imaging.

[19]  Haiguang Chen,et al.  A fast filtering algorithm for image enhancement , 1994, IEEE Trans. Medical Imaging.

[20]  Hong Yan,et al.  Data truncation artifact reduction in MR imaging using a multilayer neural network , 1993, IEEE Trans. Medical Imaging.

[21]  Zhi-Pei Liang,et al.  Superresolution reconstruction through object modeling and parameter estimation , 1989, IEEE Trans. Acoust. Speech Signal Process..

[22]  S. T. Nichols,et al.  Application of Autoregressive Moving Average Parametric Modeling in Magnetic Resonance Image Reconstruction , 1986, IEEE Transactions on Medical Imaging.

[23]  Edward J. Wegman,et al.  Statistical Signal Processing , 1985 .