Modeling and compensation for hysteresis properties in piezoelectric actuators

This paper presents a modeling and compensation approach for hysteresis properties in piezoelectric actuators. Nonlinearities due to the hysteresis and creep phenomena inherently exist in the piezoelectric actuator, resulting in the low control performance in positioning and/or tracking accuracy. In this paper, at first, the hysteresis property is mathematically modeled by Prandtl-Ishlinskii model. Based on the mathematical hysteresis model, an inverse model-based compensator combined with linear feedback controller is applied to compensate for the nonlinearities in piezoelectric actuator. The proposed approach has been evaluated by experiments using a piezo-actuated stage.

[1]  Torsten Bertram,et al.  Identification of Soft Magnetic B-H Characteristics Using Discrete Dynamic Preisach Model and Single Measured Hysteresis Loop , 2012, IEEE Transactions on Magnetics.

[2]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[3]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[4]  Zhongwei Jiang,et al.  Nonlinear Hysteresis Compensation of Piezoelectric Ceramic Actuators , 1996 .

[5]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[6]  Torsten Bertram,et al.  On system-oriented modeling and identification of magnetic shape memory (MSM) actuators , 2011, 2011 19th Mediterranean Conference on Control & Automation (MED).

[7]  Michael Ruderman Direct recursive identification of the Preisach hysteresis density function , 2013 .

[8]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[9]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[10]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[11]  Santosh Devasia,et al.  Feedback-Linearized Inverse Feedforward for Creep, Hysteresis, and Vibration Compensation in AFM Piezoactuators , 2007, IEEE Transactions on Control Systems Technology.

[12]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[13]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[14]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[15]  R. Curtis,et al.  An ultrahigh vacuum high speed scanning tunneling microscope , 1997 .

[16]  Michael Goldfarb,et al.  Modeling Piezoelectric Stack Actuators for Control of Mlcromanlpulatlon , 2022 .

[17]  Qingsong Xu,et al.  Identification and Compensation of Piezoelectric Hysteresis Without Modeling Hysteresis Inverse , 2013, IEEE Transactions on Industrial Electronics.

[18]  J. Yi,et al.  Disturbance-Observer-Based Hysteresis Compensation for Piezoelectric Actuators , 2009, IEEE/ASME Transactions on Mechatronics.

[19]  Michael Ruderman,et al.  Control of Magnetic Shape Memory Actuators Using Observer-Based Inverse Hysteresis Approach , 2014, IEEE Transactions on Control Systems Technology.

[20]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[21]  Xinkai Chen,et al.  Adaptive Sliding-Mode Position Control for Piezo-Actuated Stage , 2008, IEEE Transactions on Industrial Electronics.

[22]  Eiichi Seya,et al.  Development Of A Precision Diamond Cutting Machine For Fabrication Of Asymmetrical Aspheric Mirrors , 1988, Optics & Photonics.

[23]  Ping Ge,et al.  Tracking control of a piezoceramic actuator , 1996, IEEE Trans. Control. Syst. Technol..

[24]  Y. Stepanenko,et al.  Intelligent control of piezoelectric actuators , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).